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Preface

Back in December 1959, future Nobel laureate Richard Feynman gave a visionary
and now oft-quoted talk entitled “There’s Plenty of Room at the Bottom.” The
occasion was an American Physical Society meeting at the California Institute of
Technology. Although he did not intend it, Feynman’s 7000 words were a defining
moment in nanotechnology, long before anything “nano” appeared on the horizon.
The breadth of Feynman’s vision is staggering. In that lecture 42 years ago, he
anticipated a spectrum of scientific and technical fields that are now well established,
among them electron-beam and ion-beam fabrication, molecular beam epitaxy,
nanoimprint lithography, atom-by-atom manipulation, quantum-effect electronics,
spin electronics (also called spintronics), and microelectromechanical systems
(MEMS) or, even smaller, nanoelectromechanical systems (NEMS).

It is the latter topic which has been the focus of our research careers: mechanical
systems with at least one dimension below 1pm (107®m) where the number of
atoms departs from what is usually considered macroscale and enters into the
mesoscale.

NEMS have been developed for a bit more than two decades now. Fabrication
technology has evolved and improved enormously for these devices which allows,
for reproducibility and yield, two sine qua non conditions for an eventual commer-
cialization and, with it, a direct impact on society. The two driving forces for NEMS
research have been metrology and fundamental science.

Matter at this mesoscale is often awkward to explore. It contains too many
atoms to be easily understood by straightforward application of quantum mechanics
(although the fundamental laws still apply). Yet these systems are not so large as to
be completely free of quantum effects; thus, they do not simply obey the classical
physics governing the macroworld. It is precisely in this intermediate domain, the
mesoworld, that unforeseen properties of collective systems might emerge. Indeed,
many efforts have been invested into cooling mechanical resonators down to their
ground state, which has been recently proven. In addition, interaction between
NEMS and g-bits, operation within Coulomb blockade, etc., have been also studied
over the years.
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On the other hand, NEMS can also be used as extremely good sensors. After the
first pioneering experiments on measuring the quanta of electrical conductance and
the one of thermal conductance, NEMS have also been targeted to detect spins,
radiation, temperature, mass, etc. The theoretical limits for the performance of
NEMS-based sensors are outstanding. However, these devices have seldom made
it to the market. Comparing to their bigger brothers, MEMS, which it took them
around 35 years to start having a great impact in consumer market, we can learn
several lessons to foster the applicability of NEMS:

* Standardized fabrication: Fabrication should be reproducible, with high yield
and the fabrication process should be standard (or very similar) across many
different foundries.

* Education: An educated and trained workforce is required to tackle the problems
that arise within these systems. Unfortunately, almost no university in the
world offers a course in these type of devices, covering both the electrical and
mechanical aspects.

It is the latter point that this book aims to address: to be a textbook for a course
for engineers, not going into the details of atomic-scale simulation and analysis but
rather taking an approach such as “top-down,” i.e., using macroscopic formulas to
model the devices.

At this point, it is important to note that this book focused on NEMS, that is,
electrically transduced nanomechanical resonators, in contrast to cavity optome-
chanics, which fully transduces and controls nanomechanical resonators by optic
techniques. However, in particular, the mechanical models introduced in this book
are key to the understanding and optimization of nanomechanical resonators used in
optomechanics. There are also natural overlaps between the fields in hybrid devices,
as it is the case, e.g., in microwave-based cavity optomechanics, which is based on
electrostatic transduction but uses optomechanical techniques.

Copenhagen, Denmark Silvan Schmid
Lausanne, Switzerland Luis Guillermo Villanueva
Pasadena, CA, USA Michael Lee Roukes
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Chapter 1
Resonance Frequency

Abstract Nanomechanical resonators are continuum mechanical structures, such
as beams, strings, plates, or membranes. In this chapter the eigenmodes of such ideal
lossless continuum mechanical structures are estimated by simple analytical models.
Specific resonance modes of a damped continuum mechanical structure are best
described by an effective lumped-element model. In this chapter, the eigenmodes
of the most common continuum mechanical structures used as nanomechanical
resonators are derived. Then linear, coupled, and nonlinear damped and driven
resonators are discussed by means of lumped-element models.

At the eigenfrequency of an ideal (lossless) mechanical structure, according to
the equipartition theorem, the kinetic energy of a specific mechanical vibration is
equal to the potential energy stored in the respective vibrational deformation of
the structure. Continuum mechanical structures have many such vibrational modes,
called eigenmodes, at which this situation occurs. At the eigenfrequency, the total
energy in the mechanical system is passed back and forth endlessly between kinetic
and potential energy. Thus, once energy is added, e.g. by a kick, such a system
would endlessly oscillate precisely at its eigenfrequency with a constant vibrational
amplitude.

In a real mechanical structure however, not the entire energy is commuting
between kinetic and potential energy, but a little part of the energy is lost during
every cycle of vibration. There are many different mechanisms by which energy
can dissipate, as will be discussed in Chap. 2 on page 57. Hence, a real mechanical
structure will oscillate only for a finite amount of time, until all the energy that was
initially entered into the system, e.g. by the kick, has been lost. In real mechanical
structures with inherent energy loss, the eigenmode mechanism is called resonance.
And the predominant frequency at which the energy is commuting between kinetic
and potential energy is called the resonance frequency. The resonance frequency is
typically close (slightly lower) to the eigenfrequency of the same system assumed
without losses.

The resonance frequency of a micro- or nanomechanical resonator is typically
estimated from the respective eigenfrequency, which can be calculated by means
of analytical continuum mechanical models, as discussed in Sect. 1.1, or finite
element method (FEM) simulations. FEM tools are readily available and are the

© Springer International Publishing Switzerland 2016 1
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2 1 Resonance Frequency

most convenient way to obtain a precise estimate of the eigenmodes of specific
micro- and nanomechanical resonators. On the one hand, compared to FEM,
analytical models represent idealized mechanical structures and often do not
reproduce specific features of the mechanical resonator to be modelled. But on
the other hand, analytical models give valuable insight in the effect of geometry
and material parameters on the resulting eigenmodes. Therefore, despite FEM,
analytical continuum mechanical models are indispensable for the design process
of micro- and nanomechanical resonators.

As analytical continuum mechanical models, for simplicity, typically do not
consider energy losses, it is convenient to represent an individual eigenmode of
a mechanical resonator by an equivalent lumped-element model, as discussed in
Sect. 1.2 on page 29. It is straightforward to include energy losses in lumped-
element models, which allows for a more accurate description of the dynamic
response of an individual eigenmode of a real dissipative micro- and nanomechani-
cal resonator.

1.1 Eigenmodes of Ideal Continuum Mechanical Structures

In this section, analytical models are introduced to describe the free and lossless
(conservative) vibration of continuum mechanical structures typically used as
micro- and nanomechanical resonators. Bending vibrations of “one-dimensional”
resonators, such as beams and strings, are introduced in Sect. 1.1.1. A string is a
special case of a doubly clamped beam that is under tensile stress, such that the
effect of the tensile stress is dominating over the beam’s bending stiffness (flexural
rigidity). In other words, the difference between beams and strings lies in the way
potential energy is stored. While in beams the potential energy is stored in the
elastic bending, in strings it is stored in the work done against the strong tensile
stress during deflection. In Sect. 1.1.2 “one-dimensional” bulk modes are described.
Bending vibrations of “two-dimensional” plates are introduced in Sect. 1.1.3. Here
the distinction is made between pure stress-free plates and pre-stressed membranes,
similar to the distinction between beams and strings in the one-dimensional case.
Finally, in Sect. 1.1.4 torsional vibration in slender rods are discussed.

The classical way to find the eigenmodes of a continuum mechanical structures is
by deriving the differential equation of motion, which can be obtained by equalizing
all the forces (inertial and elastic) acting on an infinitesimally small piece of
structure (Newton’s third law). In this way it is readily possible to derive exact
solutions for many simple and idealized continuum mechanical structures, such as
beams, strings, or membranes. But for some structures, such as plates, it can be
very hard to find the solution of the resulting differential equations. In that case the
eigenmodes can be approximated by methods based on energy assumptions.

Rayleigh’s method is a useful tool to obtain a good approximation for the
fundamental eigenfrequency of a conservative system (a system without loss of
energy). The method is based on the complete commute of the energy between its
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kinetic and potential state (equipartition theorem), as explained previously. Hence,
we can assume that the maximal kinetic energy (Wiinmax) must be equal to the
maximal potential energy (Wyotmax)

Wkin,max = Wpol,max- (1.1)

All the potential and kinetic energies of a few common ideal structures intro-
duced in this chapter are listed in Table 1.1. It is obvious that in order to calculate
the energies, the structure specific mode shape u(x,y, f) is required. It is possible
to separate the spatial modal shape from the temporal variations. Separating the
variables, the mode shape function of a specific normal mode can be written in the
form

u(x,y,t) = U(x,y) cos (wt) (1.2)

where the spatial mode shape function U(x,y) gets modulated by the temporal
sinusoidal function cos(wf) with the angular velocity w.! The separation of
variables is done likewise with polar coordinates.

Since the maximal value of the temporal function is unity (max{cos (w?)} = 1),
the potential energy maximum is readily given by

Wpol,max = maX{Wpot(u(xs Ys t))} = Wpot(U(xs y)) (1.3)

Because for the kinetic energy it is essential that

2
Wiy (3u(xa,ty : t)) , (1.4)

and with the Ansatz (1.2) the maximal kinetic energy readily can be written as
Wkin,max = maX{Wkin(u(xv Y, t)} = (UZWkin(U(xv y)) (15)

Substituting (1.3) and (1.5) in (1.1), it is now possible to calculate the eigenfre-
quency §2 of a specific eigenmode

02— o2 = Woo(U (%, )

= 1.6
Wiin(U(x, y)) (1.0

for a suitable displacement function U(x,y). Rayleigh’s method yields the exact
eigenfrequency if the exact mode shape is known. But typically, the correct mode
shape function is unknown and a suitable approximation has to be assumed that
satisfies all the boundary conditions. A common approach is to use the displacement

IFor convenience, the term “frequency” is subsequently used in place for the actual correct term
“angular velocity.”
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Table 1.1 Strain and kinetic energies of various continuum mechanical structures with E: Young’s
modulus, /,: geometrical moment of inertia, h: structure thickness, w: beam width, A = hw: cross
section, p: mass density, G shear modulus, /,: polar moment of inertia, v: Poisson’s ratio, Dp =
ER/(12(1 — v?)): flexural rigidity of plate, o tensile stress [1—4]

Member Potential energy (W) Kinetic energy (Wxin)

L 2.N\2
9
Beam of length L in bending !EI, / ( ; 124) dx
vibration 0 x

L 2
d
String of length L in bending ;UA / ( M) dx

L 2
vibration 0 \dx Ap / (au) dx
Beam or String of length L in  Energy stored in longitudinal o \
bending vibration o L/au\*
extension ¢ EA / dx
0 ox
Lou\?
Rod of length L in longitudinal éEA / ( 9 ) dx
vibration 0 *
L rou\? Lou\?
Rod of length L in torsional ;GI,,/ (8 ) dx élpp/ (8 ) dx
vibration 0 x 0 !
Dp // Pu  Pu 2
2 ox2  0y?
s
2
. . 2 2 1 u
Rectangular plate of size S in | , (1—v) 0%u S poh / / (3 ) dxdy
bending vibration axdy s d
0%u 3*u
— dxd
o2 ayZ]} Y

b /R (32u+13u ?
nPO ar? r or

Circular plate of radius R in cen-

ter symmetrical bending vibra- 0%u 1 du
tion —2(1—=v) 92 7 9y rdr
1 2
oh // du
2 dx 2
Rectangular membrane of size s é ph / / ( 3“) dxdy
S in bending vibration u\2 p g
+ ( ) dxdy
dy
. . R ou\? R ou\?
Circular membrane of radius R ohn rdr ph r dr
o \ or 0 ot

in bending vibration
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function of the respective static deflection of the structure of interest due to a
uniform load. An assumed approximate mode shape is always stiffer than the correct
function and the resulting eigenfrequency obtained by Rayleigh’s method is always
slightly higher than the exact eigenfrequency.

Rayleigh’s method gives a decent approximation for the fundamental eigen-
frequency. But in order to obtain more accurate solutions, also of higher modes,
Rayleigh’s method is often combined with Ritz’s method. This method is a so-
called variational method used to approximate various mechanical boundary value
problems. The Ritz method is based on minimizing the total potential energy in a
mechanical system. The minimum energy is found by varying free variables of a test
solution that obeys all boundary conditions. The combined method to approximate
the eigenfrequencies of specific mechanical boundary value problems is often called
the Rayleigh—Ritz method. According to the Ritz method, n free variables c; are
introduced to the spatial mode shape function U (x, y) [1]

n

Ux.y) = Y cilUix.y). (1.7)

i=1

The set of variables ¢; that minimize the total energy in the structure resulting in
a minimum eigenfrequency can be found by minimizing the so-called Rayleigh
quotient (1.6)

a 2 a %Wpot(U(-xvy))

= =0 1 =1,2 e, 1.
0:” = de, ka(U(x,y»} €=123....m (1.8)

which by applying the quotient derivation rule and with (1.6) becomes

3
9, Woar(U(x.7)) = O*Wiin(Ux, )} =0 (i=1,2,3,...,n). (1.9)

Substituting (1.7) into (1.9) yields a homogeneous linear system of equations of n
variables, which can be written as

M, (0)c; = 0 (1.10)

with the square matrix M,,(w) of order n multiplied by the ¢; values of the vector
¢;. In order to get the non-trivial solution, the determinant of this system has to be
equal to zero

det(M,,(w)) = 0. (1.11)
This results in the frequency or characteristic equation yielding the corresponding n

eigenfrequencies w;. It is clear from (1.9) that the Rayleigh—Ritz method for n = 1
reduces to the Rayleigh method (1.6).
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In this chapter, the eigenfrequencies of a few exemplary structures, such as
beams, strings, and rectangular membranes are derived exactly. For all other
structures, the fundamental eigenfrequency is approximated by Rayleigh’s method,
yielding the basic terms of the particular eigenfrequencies. Approximations for the
higher modes, which typically were derived by the Rayleigh—Ritz method, are taken
from mechanics textbooks.

1.1.1 One-Dimensional Bending Vibrations

One-dimensional bending vibrations of beams and strings are among the most
common nanomechanical structures. By some definitions, they are the only actual
nanomechanical resonators with at least 2 dimension below the size of 1 pm. A few
typical examples are shown in Fig. 1.1.

10 pum

Fig. 1.1 Examples of flexural one-dimensional nanomechanical resonators. (a) Silicon nitride
nanocantilever for gravimetric gas chromatography. (Reprinted with permission from [5]. Copy-
right 2010 American Chemical Society.) (b) Silicon nitride nanostring for airborne nanoparticle
detection [6]. (¢) Aluminium nitride beam resonators. (d) High-Q silicon nitride string resonators.
(Reprinted with permission from [S. Schmid, K.D. Jensen, K.H. Nielsen, A. Boisen, Damping
mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 84(16), 165307
(2011)]. Copyright 2011 by the American Physical Society.) (e) Silicon nanobridges. (Reprinted
from [10], with permission from AIP Publishing)
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1.1.1.1 Free Bending Vibration of Beams

The eigenmode problem of bending beams is one of the prominent cases that can
be solved exactly. The model is based on the beam bending theory finalized in
the eighteenth century by the Swiss mathematicians Leonard Euler and Daniel
Bernoulli, hence the name Euler—Bernoulli beam theory. The bending behavior
of beams can be modelled under the of assumptions that the beam is slender
(L/h > 10) (see Fig. 1.2), and that the rotational inertia and the shear deformation
can be neglected. The equation of motion of a thin beam can be derived by means
of the equilibrium of forces for an infinitesimal piece of beam. Assuming a linear
elastic material and small deflections u(x, t), the equation of motion of a thin beam
(Euler—Bernoulli beam) is given by [12, 13]

u(x, 1) 0*u(x, 1)
PA o + o =0, (1.12)

where p is the mass density, A is the cross sectional area, E is the Young’s modulus,
and I, is the geometric moment of inertia. The solution to this differential equation
is a superposition of normal modes that can be separated into a position dependent
and a time-dependent term via a separation of variables [14]

El,

u(x. 1) =Y Uy(x) cos (i), (1.13)

n=1
where w is the frequency of motion and n denotes the modal number. A general
solutions to the displacement function of the beam U, (x) can be written in the form

U,(x) = aycos B,x + b, sin B,x + ¢, cosh B,x + d, sinh §,x (1.14)

with the wavenumber B,. The first two terms with the trigonometric functions
represent the standing waves in the beam center, while the last two hyperbolic terms
represent the influence of the clamping. From this equation it is clear that a beam
will vibrate in certain vibrational modes each with a distinct spatial shape.

Z
IAy
X

Fig. 1.2 Schematic drawing of a single-clamped beam
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By insertion of Eq. (1.14) into (1.12), the differential equation can be rewritten as
— pAw*u(x, 1) + EL B u(x, 1) = 0 (1.15)

which results in the dispersion relationship which yields the eigenfrequency £2 as a

function of the wavenumber
EI
Q:w:ﬂﬁ\/ . (1.16)
PA

The dispersion relationship can be written as

QzﬂﬁcE\/ﬁ'. (1.17)

with the wavevelocity cg in the elastic beam

Cg = \/E (1.18)
Ie

Assuming a rectangular cross section with beam thickness % the geometric moment
of inertia is given by [, = Al'; . By defining a flexural rigidity of a square beam

Dy = Ei? (1.19)
E7 12 '

the eigenfrequency of a beam can be written as

Q= ﬁg\/’;j. (1.20)

The Euler-Bernoulli beam theory assumes a thin and long beam. If the beam
width to height ratio becomes larger w/h > 5, the flexural rigidity of a Euler—
Bernoulli beam has to be replaced by the flexural rigidity of a plate

En?

D =
P 120 -1

(1.21)

where v is the Poisson’s ratio to account for the suppression of the in-plane dilatation
accompanying axial strain which makes a plate stiffer than a beam [1, 3].

In the next step, the wavenumber of specific eigenmodes of a beam is derived.
This is done by finding the unknown coefficients a,, b,, ¢,, d, in (1.14) by means
of the specific boundary conditions of the beam. We take into account two specific
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cases: (1) singly clamped beams, also called cantilevers, and (2) doubly clamped
beams, also called bridges.

Cantilevers

Cantilevers are fixed at one end, while the free end is curvature free and does
not experience a momentum. The boundary conditions of a cantilever are hence
described by

0 9? 3
U0) = | Un0) = |, Un(L) = Un(L) = 0. (1.22)

These fourth boundary conditions create a system of linear equations of fourth order,
which can be written as

1 0 1 0

0 1 0 1
—cos(B,L) —sin(B,L) cosh(B,L) sinh(B,L)
sin(B8,L) —cos(B,L) sinh(B,L) cosh(B,L)

(1.23)

L o &9
S O O O

A non-trivial solution exists for this homogeneous system if the determinant is zero,
that is

cos(BnL) cosh(BuL) +1 =0 (1.24)
40 v T T
20 F i
- L
& P Bal BaL PsL Bsl
<ol
s Y """
& ofF—~ |
(&)
5 \
2
3 BoL
© 20 i
-40 L L 1
0 5 10 15 20

BL

Fig. 1.3 Depiction of the roots of the frequency equation (1.24) for a cantilever
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which is the frequency equation. The equation is plotted in Fig.1.3. From this
equation has discrete solutions for specific wavenumbers f,,, which correspond to
the specific eigenfrequencies of the cantilever. This transcendent equation can be
solved numerically for the lower order modes. The cosine is a periodic function
while the hyperbolic cosine is exponentially increasing with increasing 8,L. The
number of roots of (1.24) are hence corresponding to the number of periods of
cos(B,L). For higher eigenvalues (1.24) simplifies to

cos(BuL) 20 V n>3 (1.25)

and B,L &~ (2n — 1)7r/2. In conclusion, the roots of the frequency equation of a
cantilever beam are

Ap = BuL = 1.8751,4.6941,7.8548, (2n— 1)7/2. (1.26)

We can now write the eigenfrequency of a cantilever as

A2 |EL
2, = LZ \/ . (1.27)
PA

The mode shape function U, (x) of a cantilever can be obtained from the boundary
conditions (1.22). From the first two boundary conditions we obtain

U,0)=0:a,+¢c, =0 (1.28)
aU,(0
():O:bn—}-d,,:O (1.29)
ox
and (1.14) reduces to
U, (x) = ay(cos B,x — cosh ,x) + b,(sin B,x — sinh §,x). (1.30)

With the third boundary condition we obtain the ratio of the coefficients a, and b,

02 U =0 by, _ cos(ByL) + cosh(B,L)

0x2 a,  sin(B,L) + sinh(B,L) (1.3

and (1.14) becomes

cos(B,L) + cosh(B,L)

U,(x) = ay |:cos Bnx — cosh B,x — sin(B,L) + sinh(B,L)

(sin B,x — sinh ,3,,x)i| .
(1.32)

The first four mode shapes of a cantilever are shown in Fig. 1.4. It can be seen
from the figure that certain areas of the cantilever have a large vibrational amplitude
whereas other areas (near the nodal points) are moving with low amplitude. The
number of nodal points increases with increasing mode number.
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Fig. 1.4 Schematics of the first four bending modes (a)—(d) of a cantilever seen from the side. The

amplitude is in units of A, and the position is in units of the length L, where 0 indicates the base of
the cantilever [15]

Typically, the mode shape function is used in a normalized form ¢,(x) with
¢,(L) = 1. In a normalized form, (1.32) becomes

Un(-x) = UO,n ¢n(x) (133)

where

cos(B,L) + cosh(B,L)

Sin(BaL) + sinh(B,z) 1" Pt Sinh ﬂnX)} :

(1.34)

on(x) = ; [COS Bnx — cosh Bx —

Bridges

Bridges are fixed at both ends, and the boundary conditions are hence described by

ad ad
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These four boundary conditions create a system of equations of fourth order, which
can be written as

1 0 1 0 a 0
0 1 0 1 2 (1.36)
sin(B,L) —cos(B,L) sinh(B,L) cosh(B,L) | |c[ |0 '
cos(B,L) + sin(B,L) cosh(B,L) sinh(B,L) | \d 0
Setting the determinant zero, we obtain the frequency equation
cos(B,L) cosh(B,L)—1 =10 (1.37)

with the solutions forn = 1,2,3,n > 3are A, = ,L = 4.7300, 7.8532, 10.9956,
(2n+ 1)m/2, respectively. The frequency equation for a bridge is plotted in Fig. 1.5.

The mode shape function of a bridge can be obtained from the boundary
conditions (1.35). From the first two boundary conditions we obtain, equal to the
case of cantilevers

U,0)=0: a+c=0 (1.38)
aU,(0
():O:b+d:O (1.39)
ox
and (1.14) reduces to
U,(x) = a,(cos B,x — cosh f,x) + b(sin B,x — sinh B,x). (1.40)
40 T T T T 7] T T T T T T T § T
_ 20 I il
o Pol | BaL BaL PsL 1
e 4
<
- v
-
=3
[}
8 0| Pt ]
740 I N N N N L N N A N L N N N L N N N N
0 5 10 15 20
BL

Fig. 1.5 Plot of the roots of the frequency equation (1.37) for a bridge
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Fig. 1.6 Schematics of the first four bending modes (a)—(d) of a cantilever seen from the side. The
amplitude is in units of a,, and the position is in units of the length L, where 0 indicates the base of
the cantilever [15]

With the third boundary condition we obtain the ratio of the coefficients a, and b,

82 U (L) =0: bn _ _COS(ﬂnL) — COSh(ﬂnL)

ox2 a,  sin(B,L) — sinh(B,L) (14D)

and (1.14) becomes

cos(B,L) — cosh(B,L)

Un(x) = ay [COS Pux = coshfux = G 8. 1) — sinh(B,L)

(sin B,x — sinh ﬂnx)i| .
(1.42)
The first four mode shapes of a cantilever are shown in Fig. 1.6.

The normalized mode shape function for the edge peak of a bridge ¢,(x) is
approaching

1
V2

cos(B,L) — cosh(B,L)

Sin(ﬂnL) - Sinh(’BnL) (Sin ,an — sinh ‘an)]

(1.43)

Pu(x) = [cos Bnx — cosh B,x —

for n > 3. For lower mode numbers n = 1,2, 3, ..., the normalization factors are
0.6297,0.6626,0.7112, ~ 1/+/2.
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1.1.1.2 Free Bending Vibration of Beams Under Tensile Stress (Strings)

Thin films typically used in microfabrication tend to have a process related tensile
stress. Doubly clamped beams made of such thin films are therefore usually pre-
stressed. A tensile stress o increases the eigenfrequency and has to be taken into
account by adding a term for the tensile force N = oA to (1.12). Applying Newton’s
third law, the free and undamped bending vibration for small amplitudes can then
be described by

2
oA " u(x, r) N

*u(x, 1) 0%u(x, t)
o ' -N -

EL 0 1.44
ox4 ox? ( )

This equation of motion can be solved with the Ansatz (1.13) for the case of a simply
supported doubly clamped beam with the boundary conditions

02 02
U0) = Up(0) =, ,Un0) = 1, Un(L) = 0 (1.45)

assuming a sinusoidal mode shape with wavenumber 8,
U,(x) = Upp sin (Bnx). (1.46)
Substituting (1.46) in the general Ansatz (1.13), the equation of motion (1.44)

readily yields the dispersion relationship which yields the eigenfrequency 2, as
a function of B,

El
Qu=w=]"p2+ "B (1.47)
P PA

This equation can be rearranged into the following form

EI, oA
2, = p? > N ) 1.48
ﬁn\/pA\/ +E1y/35 (1.48)

It shows that the eigenfrequency is basically the eigenfrequency of an unstressed
beam (1.16) multiplied by a term which increases with stress. Choosing a wavenum-
ber that satisfies the boundary conditions (1.45)

Bn = , (1.49)

two extreme conditions can be defined. On the one hand, if

oA L?

1 1.50
EI, (nm)? < (1.50)
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Eq. (1.48) reduces to (1.16) of an unstressed simply supported beam, as mentioned
already. On the other hand, if

oA [L?

1 1.51
EI, (n7w)? > (1.51)

the flexural rigidity can be neglected and (1.48) reduces to

2,="" \/U (1.52)
LYp

which is the eigenfrequency of a string, a pre-stressed thread-like elastic contin-
uum without flexural rigidity. Compared to cantilevers or stress-free bridges, the
resonance frequency of strings is not a function of the beam thickness. It is mainly
defined by the length and the tensile stress. The eigenfrequency (1.52) can also be
written in the following form

ni
L=, G (1.53)

with the wave velocity inside a string of

Cy = \/U. (1.54)
0

The derivations above were done for a simply supported beam. These are valid
boundary conditions for an ideal string with zero flexural rigidity. But a real micro
or nanomechanical string-like resonator typically is clamped at both ends and
possesses a non-negligible rigidity. As long as the string condition (1.51) is fulfilled,
the beam rigidity can be neglected for the calculation of the eigenfrequency (1.52).
However, the finite string rigidity will influence the mode shape, particularly at the
clamping sites. The full set of wavenumbers required to model a suitable mode shape
function of a string, on the basis of (1.14), can be found by solving the dispersion
relation of the pre-stressed beam (1.47)

4, OA 2 PA
-2 =0. 1.55
Bit g B2y (1.55)
The four solutions of f,, are then
10A p EI,
ni—s =+ 14+ |[14402"7 77 1.56
Pri-s 2 EI, * 0 0A (156)

<1
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Inserting the string eigenfrequency (1.52) shows that the last term in (1.56),
according to the string condition (1.51), is a lot smaller than unity. Hence, the inner
square root can be approximated by a Taylor series and (1.56) becomes

_ 10A _ nm\2 EI,
ﬂ"’1_4_i\/2E1y[ 11(1+2(L) UA)}. (1.57)

In this form, the two positive solutions are apparent, namely
nmw
nl = Po = , 1.58
Bni =B L (1.58)

which is the already known wavenumber of a perfect string, and

oA
Buz = Br = (1.59)
2o \/Ely

which is the wave number related to the flexural stiffness of the string.

The mode shape of a “realistic” string resonator can now be approximated
by using the string wavenumber S, for the trigonometric terms in (1.14) which
represent the standing waves in the string. For the hyperbolic terms, representing
the clamping conditions, the wavenumber B¢ from the flexural stiffness of the string
is used instead

U,(x) = a, cos Bsx + b, sin Byx + ¢, cosh Bgx + d,, sinh Bgx. (1.60)

The first two boundary conditions for a doubly clamped beam (1.35) yield a
simplified mode shape

U,(x) = a, (cos Byx — cosh Bgx) + b, (sin Box + ,IZU sinh ,BEx) . (1.61)
E

The last two conditions result in a, ~ —gg b, under the valid string assumption of
Be > 1 and the mode shape function can be expressed as

U () = Pn(x) L0<x<L/2 (1.62)
(=), (L—x) ,L/)2<x<L

with

dn(x) = (sin(,BGx) - ﬁa [cos(Byx) — cosh(BEx) + sinh(,BEx)]) , (1.63)
E



1.1 Eigenmodes of Ideal Continuum Mechanical Structures 17

0.020
1/B, = 1/200
0.015} Be
M
X oot0f
0.005 [
0.000
0.2 ‘ ‘ ‘ ‘
0.000 0.002 0004 0006 0008 0.010 0.0 0.1 0.2 0.3 0.4 0.5
x/L x/L

Fig. 1.7 String modeshape (1.64) for Bz = 200
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Fig. 1.8 Schematics of a thin beam under longitudinal vibration

which can be further simplified with the algebraic expressions sinhx = (e*—e™)/2
and coshx = (e* 4+ e™)/2 to the following form

Pu(x) = (sin(ﬂ(,x) _P ; [cos(Box) — e—ﬁEX]) . (1.64)

B

This equation shows that Sr represents the inverse of the exponential edge-
correction decay length which results from the flexural rigidity of the string. The
string modeshape (1.64) and the edge effect resulting from the flexural rigidity of
the string is visualized in Fig. 1.7.

1.1.2 One-Dimensional Bulk Vibrations

Nanomechanical one-dimensional bulk resonators are rarer than flexural resonators,
as it can be challenging to detect the small vibrational amplitudes. On the other
hand, such bulk mode resonators have become the facilitating device in recent
breakthrough experiments in quantum optomechanics due to their high resonance
frequencies in the GHz-regime [16, 17].

In this subsection we consider longitudinal waves in a thin beam which produces
the axial displacement u(x, r). Figure 1.8 shows a schematic of a thin cross section
piece of a thin beam. According to Newton’s third law, all forces acting on the small
beam piece have to equalize. The acting force are, on the one hand, the inertial force
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F; and, on the other hand, the forces exerted from the neighbor piece. Assuming a
thin beam with cross section area A with an even axial stress distribution o (x, ), the
force equation can be written as

0u(x,t
Foepad WD g

0 = Alo(x + dx, ) — o (x, 1)), (1.65)

with the mass density p. For a short piece, the term in the square brackets can be
approximated by

a@+@ﬁ—o@oz§%x (1.66)
X

and (1.65) simplifies to

u(x,) 0do
p =

0 0 (1.67)

Applying Hook’s law of elasticity, we can express the axial stress as a function
of the axial deformation

du(x, t
(1) = Ee(x. 1) = £V (1.68)
ox
and (1.67) turns into the one-dimensional wave equation
u(x, 1) 5 Pu(x, 1)
e = g 2 (1.69)

with the wave velocity inside the material of

Cg = \/E (1.70)
Ie

This one-dimensional wave equation is also obtained in the case of the string
resonator, as discussed in the previous Sect. 1.1.1.2, when dismissing the flexural
rigidity in the respective equation of motion (1.44), with the appropriate wave
velocity for a string (1.54).

The one-dimensional wave equation (1.69) can readily be solved with the
common Ansatz of separating the spatial and temporal variables, which for a
individual normal mode writes

u(x, r) = Uy,(x) cos (wt) = Uy ¢n(x) cos (wr) (1.71)
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which yields the ordinary differential equation

3%,
4 +pB2p=0 (1.72)
ox?2
with the dispersion relationship
B,= 2. (1.73)
CE

The resulting differential equation (1.72) can now be solved for specific boundary
conditions with the general solution

¢n(x) = asin (B,x) + bcos (B,x). (1.74)

In the case of both ends free condition, the stress is disappearing at the beam ends
which can be expressed by

06,(0) _ 0¢n(L) _

0 o 0. (1.75)

When applying these boundary conditions to the ordinary differential equa-
tion (1.72) results in

a=0 & sin(BL) =0. (1.76)

The latter solution is true for all wave numbers 8, = ns/L with the mode numbers
n=1,2,3,.... From (1.73), the eigenfrequencies can be calculated

Q=w= "L” cE. (1.77)

The similarity with the eigenfrequency of a string (1.53) is now obvious. The string
is fixed at both ends which results in a sinusoidal mode shape. The longitudinally
vibration beam on the other hand is free at both ends and the mode shape is given by

Upn(x) = Upnén(x) = Upn cos (”Zx) (1.78)

and depicted in Fig. 1.9.
In the case of the boundary condition that one end is free, the stress is
disappearing at the beam ends which can be expressed by

AU (0)

= Uy(L) =0 (1.79)
ox
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Fig. 1.9 Mode shapes ¢, (x) for a longitudinal vibration of a beam with length L = 1 with two
free ends

the eigenfrequency becomes

(ZJT - 1) CE
g .

2, =
2 L

(1.80)

1.1.3 Two-Dimensional Bending Vibrations

Two-dimensional bending resonators can be separated into plates and membranes,
similar to the distinction between one-dimensional beams and strings, as introduced
in Sect. 1.1.1 on page 6. The ideal case of a plate is reached if the mechanical
behavior is dominated by the bending stiffness (flexural rigidity) of the structure.
The other ideal case of a membrane occurs if there is a tensile stress inside the
structure that is dominating its behavior, and the flexural rigidity does not have
to be taken into account. They are interesting partly for two reasons. First, they
can be fabricated from thin films with thicknesses reaching from a few tens of
nanometers down to a few angstroms when, e.g., fabricated from single layers of
graphene. Second, the large lateral dimensions allow for a strong optical or electrical
interaction, which results in efficient transduction of the vibrational motion. The low
mass combined with the strong external coupling is the reason that two-dimensional
resonators have become key structures in many applications, most prominently
in optomechanics. Typical examples of two-dimensional resonators are shown in
Fig. 1.10.
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Fig. 1.10 Examples of two-dimensional flexural micromechanical resonators. (a) aluminium
coated silicon nitride membrane resonator [12]. (b) SiN membranes coated with a single graphene
layer (SiN-G) and aluminium (SiN-Al) for optoelectromechanical coupling. (Reprinted from [23],
with permission from AIP Publishing)

All subsequently presented continuum mechanical models are based on the
general assumptions of a perfectly elastic, homogeneous, and isotropic materials.

1.1.3.1 Free Bending Vibration of Plates
Rectangular Plates

The equation of motion of a rectangular plate with a flexural rigidity Dp [see
Eq. (1.21) on page 8] is given by the two-dimensional wave equation [1, 24]

D22t ¥ Z g (1.81)
u— = .

P 1Y a t2

which, however, can only be solved for the case that the plate is simply supported

with the common Ansatz of separating the time and spatial variables
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ulx,y, t) = U(x,y) cos (wt) (1.82)

with a sinusoidal mode shape

Ux,y) = Z Z Up »j sin (n[irx) sin (JZ}’) (1.83)
n=0 j=0 J :

where L, and L, are the side lengths in x and y direction. Inserting (1.82) into (1.81)
yields the eigenfrequencies of a simply supported plate

DP n2 j2
2, =7’ + 1.84
=7 \/ oh (L§ 12 (1.84)

which in the case of a quadratic plate with L, = L, = L reduces to
202, 2

mo(n”+j7) [Dp
2, = . 1.85
J 1 \/ oh (1.85)

As presented, the problem of simply supported plates is straightforward to solve.
But simply supported plates are basically impossible to realize on the micro and
nanoscale and the more likely boundary conditions are, e.g., all 4 edges clamped or
free. The eigenmode problem of these boundary conditions is very hard to solve.
For this case, Rayleigh’s method is a useful tool to obtain a good approximation for
the fundamental eigenfrequency. The maximal kinetic and potential energies of a
plate are given by (from Table 1.1)

a)2
Wiinmax = P ph // Udedy- (1.86)
and
1 RPUN\? U PU
Wootmax = . D ViU +2(1 — — dxdy.
pomer = P// (V2UY? +2( ”)[(axay) o 3y2] .
(1.87)

For a rectangular plate the following displacement function describes the exact
shape of the fundamental mode to a good approximation

Ux,y) = e = (Le/2))°(* = (L,/2)*)? (1.88)

and it satisfies the clamped boundary conditions

=0 & =0 (1.89)
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Approximation FEM

Fig. 1.11 Comparison of the plate displacement assumed for the analytical approximation and the
actual displacement calculated by FEM

A comparison of this displacement function to the actual mode shape simulated
by FEM is shown in Fig.1.11. Inserting the mode shape Ansatz (1.88) into
Rayleigh’s equation (1.6) results in the approximate eigenfrequency solution for
the fundamental mode of a clamped plate

TL4 4+ 41212 + 714 D,
Q1 =62, oy Y 1.90
1.1 \/ LﬁL‘y‘ oh (1.90)

which for a square plate (L, = L, = L) simplifies to

36 [D
Q) = \/”. (1.91)

This approximate result obtained via Rayleigh’s method has an error smaller than
0.1 % compared to the result obtained via FEM.

The approximate solution for the fundamental eigenfrequency (1.92) is qual-
itatively correct. Hence, the general eigenfrequency of a bending plate can be
written as

1 [Dp
Doy =y o’ (1.92)
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Circular Plates

The fundamental eigenfrequency of a circular plate can readily be approximated by
means of the Rayleigh method. From Table 1.1 the maximum potential and kinetic
energies are given by

PUG) 10U\ PU®) 19U(r)
Weotmax = ﬂDP/O ( or? r or ) —20-v) ot r or rdr
(1.93)
and
R
WKin,max = ”Ph/ (U("))Zrdr. (194)
0

The approximate mode shape function for a circular plate with clamped bound-
aries can be approximated by [3]

U@r) = c (1 — (;)2)2 (1.95)

Substituting the mode shape (1.95) in (1.93) and (1.94) results in Wpgtmax ~
327D,/ (3R?) and Wiin max &~ whR*p/10, and the eigenfrequency can be calculated
with (1.6), which yields the approximation

1 |Dp
210~ 10.33 . 1.96
1.0 R \/hp (1.96)

This approximation of the fundamental eigenfrequency of a circular plate
clamped at the boundary shows how to express the eigenfrequency equation more
generically

1 [D
20 :anJRz\/h; (1.97)

with the exact corresponding «,,; values, derived via the Rayleigh—Ritz method,

listed in Fig. 1.12.

Fig. 1.12 Mode shapes ofa  Mode (n,j)  (1,0) 1 1) (1 2) 2 0)

circular plate clamped at the
boundary. n represents the
circular modes and j the nodal

diameters
Op,j 10.21 21.22 34.84 39.78 88.90
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Table 1.2 Eigenfrequency constants
ap, for a circular plate fixed in the
center for concentric modes [3]

n o j=0 j=1 j=2 j=3
1 375 2091 60.68 119.7

Fig. 1.13 Mode shape of a quadratic membrane forn = 2 andj = 3

A specific boundary condition typical for circular plates is the fixed in the center
design. Corresponding a,; values are given in Table 1.2.

1.1.3.2 Free Bending Vibration of Plates Under Tensile
Stress (Membranes)

Rectangular Membranes

The equation of motion of a rectangular membrane is given by the two-dimensional
wave equation [24]

%u

Viu — =0 1.98

oViu—p,; (1.98)

and can be solved with the same Ansatz (1.82) used for plates in Sect. 1.1.3.1 on
page 21 of separating the variables (Fig. 1.13).
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With (1.83), Eq. (1.98) can be solved and the eigenfrequencies of a membrane

becomes
o |n2n? P2
2, = 1.99
} \/p\/ 5t (1.99)

which in the case of a quadratic membranes with L, = L, = L reduces to

1 1
20 = w2 +j2L\/Z =+ 7 . (1.100)

It can be seen that the one-dimensional form of (1.100) results in the eigenfrequency
of a string (1.52).

Circular Membranes

The eigenfrequency of a circular membrane can be readily approximated with the
Rayleigh method, as introduced in the previous Sect. 1.1.3.1. The mode shapes of a
circular membrane is best described in circular coordinates. The fundamental mode
with a vibrational amplitude ¢ in the membrane center can then be approximated
by [3]

r

U(r) =
(r) = ccos IR

(1.101)

with the radial coordinate » and the membrane radius R. The maximal Kinetic and
potential energies are given by

1 R
Wkin,max = 2602,0 / U(r)*2mrdr (1.102)
0

and

1 (Rroumy’
Wpotmax = 20/ ( (r)) 2wrdr, (1.103)
0 r

respectively. An approximation for the eigenfrequency of the fundamental mode of
a circular membrane can now be calculated from the Rayleigh principle (1.1), which

yields
2441 2415
911%”\/” + o _ o (1.104)
’ 2V n2—4R\ p R 0
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Mode (n,j) (1,0) (2,0) (1,3) 2,1)

Q.Q

2.404 3.832 5.135 5.520 6.379 7.016

(1,4) (2,2) (3,0) (1,5) (2,3)

7.586 8.417 8.654 8.780 9.760

Fig. 1.14 Eigenmodes and respective ,,; values of a circular membrane. The nodal lines (lines of
zero vibration) are marked as dashed lines. n represents the straight nodal lines, and j concentric
nodal circles

This approximation is close to the precise value of [3]

2.404
\/U. (1.105)
R P

The term for the eigenfrequency obtained by Rayleigh’s principle is qualita-
tively correct and the eigenfrequencies of circular membranes can generally be
expressed as

o, o 1
Q=" =, Co 1.106
J R\/p Unj p€ ( )

where ¢, is the velocity of a bending wave on a membrane, as introduced for strings
earlier in Sect. 1.1.1. Values of a,,; for the first 12 modes are listed in Fig. 1.14.

1.1.4 Torsional Vibration of Thin Beams

Torsional vibrations of nanomechanical beams are a common resonator design.
A few examples are shown in Fig. 1.15. The torsional vibration of a slender beam is
very hard to electronically or optically transduce directly. Therefore, most torsional
nanomechanical resonators feature a relatively large paddle, as can be seen from
Fig. 1.15, which leverages the small torsional vibrations to amplitudes than can
easily be actuated and detected. Typically in such torsional paddle resonators, the
rotational inertia of the bars hinging the paddle can be neglected. Such resonators are
best described as a lumped-element model, as discussed in Sect. 1.2.1.6 on page 40.
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Fig. 1.15 Examples of torsional nanomechanical resonators. (a) Silicon torsional paddle infrared
bolometer (Reprinted with permission from [26]. Copyright 2013, American Chemical Society.),
(b) torsional nanoelectromechanical electrometer [27]

The rotational eigenfrequency of a slender bar can readily be calculated by
Rayleigh’s method (1.6), with the potential and kinetic energies from Table 1.1

1 L raux)\?
Whot,max = 2GIP/0 ( o ) dx, (1.107)
and
1 2 t 2
Wiinmax = lepw (U(x))” dx. (1.108)
0

Assuming a sinusoidal modeshape for the case of rod clamped at both ends
b4
m@:cm(lg (1.109)

the eigenfrequency becomes

G
m:szﬁﬂw (1.110)



1.2 Lumped-Element Model Resonator 29
with the shear wavevelocity

G
o=+ . (1.111)
P

This eigenfrequency is apparently similar to the eigenfrequencies for strings (1.52)
and one-dimensional bulk vibrations (1.77). All three structures can be funda-
mentally described by the one-dimensional wave equation, producing sinusoidal
standing waves.

1.2 Lumped-Element Model Resonator

In this section the more complex behavior of mechanical resonators is discussed
by means of lumped-element models, in contrast to the simple energy conservative
continuum mechanical systems introduced in the pervious Sect. 1.1. In Sect. 1.2.1
behavior of non-conservative linear resonators are introduced, that is resonators
that dissipate energy during vibration. Section 1.2.2 presents an analysis of linear
resonators that are coupled to each other. Section 1.2.3 discussed the nonlinear
behavior of resonators when driven at large amplitudes.

1.2.1 Damped Linear Resonator

Mechanical vibrations in physical systems are associated with the periodic conver-
sion of kinetic to potential energy and vice versa. Elastic elements such as beams,
strings, and plates are able to store potential energy in terms of the deformation
energy. If the system comes out of its position of rest, restoring forces accelerate the
mass of the system towards the rest position thereby generating kinetic energy. Due
to the kinetic energy, the physical system traverses the position of rest, generating
new deflection energy that is potential energy. This periodic energy conversion
would continue forever if the present mechanical energy would not be resisted by
dissipative forces.

For the calculation of the free vibration (eigenfrequency) of continuum mechan-
ical resonators, as discussed in the previous chapter, dissipative forces where
dismissed and the total energy remained constant at any time. In a real vibrational
system energy is always dissipated by viscous damping, acoustic transmission,
surface losses, internal dissipation, etc. The damping mechanisms in nanome-
chanical resonators are discussed in Chap. 2. Dissipative forces are approximately
proportional to the velocity of the vibrational movement and are often modelled as
a dashpot, as shown in Fig. 1.16.



30 1 Resonance Frequency

Fig. 1.16 Damped F(t)
one-dimensional oscillator
with one degree of freedom

The mechanical behavior of solids is generally approximated by a linear relation
between the continuum stress ¢ and strain &

o =Ee (1.112)

with the Young’s modulus E. As long as a resonator is driven in the linear
regime, which is usually the case for appropriately small vibrational amplitudes, the
dynamics of an individual resonance mode can be simplified with that of a linear
harmonic oscillator. The forced vibration of a damped system with a single degree
of freedom can hence be modelled with a one-dimensional resonator oscillator based
on a linear zero mass spring, a linear damping element, and a mass, as depicted in
Fig. 1.16. Assuming a periodic driving force F(#) = Fcos (wf), the second order
differential equation of the system is

mz + ¢z + kz = F(1), (1.113)

where m is the total mass, k is the spring constant, and c is the coefficient of damping
force.

1.2.1.1 Free Undamped Vibration

In the specific case of a non-driven lumped-element resonator with zero damping
¢, the total energy of the system remains constant. In this case the resonator
turns into an oscillator with the vibrational amplitude z(f) = zocos(wt). During
oscillation the total energy is fully swapped back and forth between kinetic
(at the zero crossings) and potential (at the reversal points) energy. According to
the equipartition theorem (1.1), the two energies have to be equal
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1
mz? = _kz? (1.114)

which yields the eigenfrequency §2 of the undamped free mechanical system, also
called an “oscillator”

szz\/k. (1.115)

m

1.2.1.2 Free Damped Vibration

In the case of an undriven system, the equation of motion (1.113) reduces to the
homogeneous differential equation

ZI+2nz+82z=0 (1.116)

with the coefficient of damping

¢ (1.117)
ne = .
2m

Inserting a trial solution z = zpe"’ in (1.116) gives then solutions that satisfy

Vip = —ne £ /n2 — Q2. (1.118)

The system performance is defined by the ratio between n, and £2, which is called
the damping ratio

ne
= . 1.119
¢ o ( )
If £ > 1, y is real and the solution of (1.116) is an exponential decay. In this
situation the system is heavily damped (over-damped case). For a slightly damped

system (under-damped case) ¢ < 1, (1.118) becomes imaginary
Y2 = —ncii\/ﬂz—nf. (1.120)

Since for a linear homogeneous ordinary differential equation the linear sum of
linearly independent solutions (real and imaginary) are also solutions, and by
applying Euler’s formula, the solution of (1.116) becomes

2() = z0e %% cos (9 V- ;%) . (1.121)
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Fig. 1.17 Plot of (1.121) forzo =1, £2 =1, and { = 0.03

This equation indicates that the system has an exponentially decaying oscillation
with a frequency W, = £2/1 -2 = /22 —n2, also called natural frequency.
The solution (1.121) is depicted in Fig. 1.17.

1.2.1.3 Driven Damped Vibration

The solution of (1.113) is the sum of the transient solution of the homogeneous
differential equation (1.121) and a specific steady solution that is described by

2(t) = z0e™". (1.122)

where zo is the amplitude of the resulting vibration. Inserting (1.122) into (1.113)
yields

- Fofm (1.123)
O (22— w?) £ 2itQw ‘

This complex amplitude can be converted to the polar form, with the norm

F()/m

|20 = (1.124)
V(22 — 0?)? + 4022202
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and the phase
2l 2w
arg(zo) = ¢ =arctan " . (1.125)
and the real specific solution then takes the form
F
(1) = o cos (@1 + ¢). (1.126)

\/(Qz — w?)? 4 4822°w?

Both the amplitude and phase response can be written as a function of the relative
frequency w/ 2

Fo/k
|z0] = 0/2 . (1.127)
)2 )2
JO- @) e )
and
arg(zo) = ¢ = arctan ié'gg) . (1.128)
9) -1

The numerator in (1.127) Fy/k represents the static deflection. Hence, the relative
amplitude response (also called dynamic amplification or gain) is then simply
given by

1
820 = . (1.129)

Ja= (82 +a2 (5)

Both the amplitude and phase response of a linear resonator are plotted in
Fig. 1.18a—c.

Another common way to actuate a mechanical resonator is by shaking its base by,
e.g., a piezoelectric shaker. The schematic representation of this scenario is shown
in Fig. 1.18d. In this case the relative amplitude and phase response become [28]

() ‘
Ja= (8 +a2 (5)

820 = (1.130)

and

2 w
arg(zo) = ¢ = arctan C(Z)z' (1.131)
1
2

Both functions (1.130) and (1.131) are plotted in Fig. 1.18e, f.
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Fig. 1.18 Driven damped vibration of a lumped system. Schematic drawings of a damped
resonator (a) driven by a force and (d) driven by an external vibration. (b) and (e) show the
respective relative amplitude responses (1.129) and (1.130), and (c¢) and (f) show the respective
phase responses (1.128) and (1.131)

From (1.129) it can be seen that the amplitude of a slightly damped system has a
maximum near the eigenfrequency £2, the so-called resonance peak. The frequency
of the highest amplitude is called resonance frequency w, and it can be found at
dB/dw = 0. The resonance frequency is given by

wr = 2+/1-2¢2 (1.132)

For slight damping, the resonance frequency is very close to the eigenfrequency of
the system w, ~ 2.
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When inserting w, into (1.128), the phase lag at resonance becomes
J1-=22
¢ .

For slight damping, the phase lag at resonance approaches ¢, & arctan 1/¢ = /2.
At resonance, the vibrational amplitude reaches a maximal value of

¢, = arctan (1.133)

Fo ! (1.134)
20,max = .
2w 1-p2
which for slight damping becomes
_ Fo 1—FOQ (1.135)
20,max — sz 2§ == k . .

The maximal amplitude at resonance is the static deflection times an amplification
factor Q, that is called the quality factor, which will be discussed in the next
subsection.

1.2.1.4 Quality Factor

The quality factor (Q) is a value indicating the sharpness of the resonance peak.
There are several definitions of Q, all equivalent for slight damping.

The physical definition is the ratio between the energy stored and energy lost
during one cycle at resonance

W
Q=21 .. (1.136)

where W is the total energy stored in the system and AW is the energy loss during
one cycle of oscillation.

With a displacement of z = acosw,t at resonance, the total energy of the
system is
L. 155
W =max| _mz; = maw,. (1.137)
2 2
With the dissipative force F; = —cz, the energy lost during one cycle can be

calculated as

27/ w, 21/ wy
AW = — / Fidi = / 2dt = wedw, (1.138)
0 0
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and

w mo
0= 27tAW = . (1.139)

With (1.117), (1.119) and (1.132) Q can be written as

_ J1-222

Q 2

(1.140)

For slight damping, the quality factor becomes Q ~ 21 .

Fitting of linear oscillator model to the measured amplitude and phase lag
response is a practical method to obtain Q. Therefore, the modal amplitude (1.127)
and phase lag (1.128) curves can be written as

F()/m
= (1.141)
\/(92 — 0?)? + Q202 Q?
and
w
¢ = arctan o2 _/52‘ (1.142)

Instead of fitting with the oscillator model, the measured resonance curves are
fitted with a Lorentzian function. The extraction of Q is then based on the —3 dB
bandwidth method.

The —3 dB bandwidth method is based on the definition of Q in electrical resonant
circuits where quality factor is given by [28]

w, 1-222
(0] Aoz 2 (1.143)
where Aw_34p is the frequency difference between the two frequencies at which the
amplitude curve (1.127) has the half maximum energy B/~/2 (—3 dB). For slight
damping, this definition of the quality factor is equal to the physical definition.
The quality factor can now be found by measuring the amplitude response around
the resonance. According to (1.143) the resonance frequency divided by the —3 dB
bandwidth is an approximation for Q for slight damping.

In a typical electrical measurement the power response instead of the amplitude
response is measured. The power is proportional to the square of the resonator
amplitude (1.127). For slightly damped systems, the resulting power response can
well be approximated by the Lorentzian function f;, which is related to the Cauchy
distribution,
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Fig. 1.19 Comparison of the power response of a linear resonator to the Lorentzian function
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.20, T ¢) = (1.144)
=] oty iy

where ¢ is a fit parameter and I’ = Sw_3qg & 2n. is the full width at half
maximum (fwhm). A comparison of the power response of a linear resonator to
the corresponding Lorentzian (1.144) is shown in Fig. 1.19.

From the phase response the quality factor can be determined accurately. The
determination of the amplitude maximum and the bandwidth can be inaccurate. In
contrast, the phase response can be measured precisely. Q can be calculated from
the slope of the phase response (1.128) at the resonance frequency

do 1 20
= =~ 1.145
w|,—.0 n. £ ( )

The ring down method makes direct use of the energy dissipation of a damped
resonator. It is a particularly useful method for very high Os where the bandwidth
becomes too small and the phase angle becomes too steep to be determined pre-
cisely. The resonator is driven close to its resonance frequency. Then the actuation
is stopped and the oscillation decaying, following the transient solution (1.121).
The quality factor can now be found by fitting an exponential function exp(—#/71)
to the envelope of the decaying vibrational amplitude, as shown in Fig. 1.17. With
n. =t~ !, Qis given by

0= ;szz. (1.146)
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1.2.1.5 Effective Parameters

It is commonly used to simplify the dynamics of an individual resonance mode
(normal mode) of a continuous structure with that of a harmonic oscillator

kef.n
an\/ e (1.147)

Meff n

where ke, and megr, denote effective spring constant and effective mass of
the particular normal mode. These effective parameters can readily be obtained
by comparing the lumped-model potential or kinetic energies to the respective
continuum mechanical energies listed in Table 1.1. It is important to note that
the effective parameters depend on the chosen amplitude normalization (U,(x) =
Uon¢n(x) = zo). It is therefore important to mention the position x chosen for
the comparison. Typically, the lateral location of the maximal displacement in the
fundamental mode is chosen, which e.g. for a singly clamped beam is at the tip
(zo = U,(L)) while for a doubly clamped beam it is in the center (zo = U,(L/2)).
In the following two paragraphs, two different methods to derive the effective
parameters are presented at the example of one-dimensional beams as introduced
in Sect. 1.1.1.1. The methodology can directly be translated for other continuum
mechanical structures. In Table 1.3 the effective mass of a few common continuum
mechanical structures is listed.

Energy Approach

This approach is based on the comparison of the kinetic energy of the continuum
mechanical structure to the kinetic energy of the corresponding lumped-model
system. With the kinetic energy of a one-dimensional beam resonator, see Table. 1.1,
the kinetic energy comparison yields

1 2

L
2Ap/0 (8at Up ndn(x) cos (a)t))

Setting the absolute vibrational amplitudes of the two systems equal (Up, = zo),
the following effective mass can be extracted

d_x = m, Zp COS ( t) (1 1 8)
ell,n . . 4
2 ff, a 0 (O

L
Mg = pA / P2 ()dx. (1.149)
0

Knowing the effective mass, the corresponding effective stiffness ke, can
readily be obtained from the eigenfrequency equation (1.115)

keftn = $22Meft (1.150)
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Table 1.3 Effective mass and stiffness constants of various continuum mechan-
ical structures with total mass my for various boundary conditions BC

Member Effective mass (m.) Normalization position x

Singly clamped beam |m Attip (x = L)

of length L in bending
vibration

Doubly clamped beam ;mo Center of antinode
of length L in bending
vibration

String of length L in ,mp Center of antinode
bending vibration

Singly clamped rod of imo Attip(x = L)
length L in longitudinal
vibration

Doubly clamped rod of ,mg Center of antinode
length L in longitudinal
vibration

Rectangular plate of my Center of antinode
size S in bending vibra-
tion

.

Circular plate of radius émo Center of antinode
R in bending vibration

Rectangular 4110 Center of antinode
membrane of size
S in bending vibration

or by comparing the potential energies of the equivalent systems, similar to the
equalization of the kinetic energies for obtaining the effective mass.

Galerkin’s Method

This method is a more general approach of deriving not only the effective mass
but also all other effective parameters. The derivation is performed for the case of
an undamped “one-dimensional” beam structure, with the differential equation of
motion (1.12) extended to include an actuation force F(x, f)

0%u(x, 1) *u(x, 1)
’ = 1.151
PA a2 + EI, ot F(x,1). ( )

Assuming that the motion of the beam is only happening on one vibrational mode,
ie. u(x,r) = u,(t)¢,(x), multiplying by that mode shape ¢, (x) and integrating all
over the length of the structure, i.e. fOL , it is possible to reach the lumped- element
modelling using integration by parts
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L L L
pain () [ gias+ B [ oPmae= [ Reosmen (152

In doing so, all other mode components disappear except the selected mode
component remains. The family of normal modes ¢, form an orthogonal base for
the Hilbert space of functions between 0 and L. The multiplication with a particular
modeshape function and integrating over the resonator area is equivalent to taking
the inner product between orthogonal norms.

From (1.152) it is possible to define the effective mass megr, (1.149), effective
stiffness kefr,, and effective force Fegr,, so that the lumped model equation is
retrieved

meff,ni/in(t) + keff,nun(t) = Feff(t) (1.153)

with the effective parameters
L
Mefrn = PA / ¢>3(x)dx
0
L
kettn = EI / ¢! (x)dx (1.154)
0

L
Feff,n = /0 Fn(xv t)¢n(-x)d~x'

The presented formalism can readily be extended to different parameters (see
Sect. 1.2.3) and to two-dimensional structures (see Sect. 3.2.2.1).

1.2.1.6 Torsional Paddle Resonator

The calculation of the common torsional paddle resonators as introduced in Fig. 1.20
in Sect. 1.1.4 on page 27 represents a special case of a resonator that best is modelled
as a lumped-element system. The typical design of such a resonator is shown in
Fig. 1.20. In this depicted case the rotational inertia is solely concentrated in the
rotating paddle in the center. The hinging bars are acting as rotational springs with a
negligible rotational inertia. This assumption is particularly true for paddles hinged
by carbon nanotubes (see, e.g., Fig. 1.15a).

The rotational stiffness of the connecting bars can readily be derived by compar-
ing the potential energies of the continuum mechanical bar to the corresponding
lumped-element model. Assuming a rod with constant cross section, a linear
modeshape function can be used

Ux) = Uoz (1.155)
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Fig. 1.20 Schematic drawing of torsional paddle resonator

and the potential energy of a rotational shaft (see Table 1.1)

1 Lot 19U (x) |2
Woot,max = Gl dx 1.156
pot, 2 [’/0\ ( ox ) ( )
becomes
1  GI
Wpol,max = ) Uy Lrolc)l . (1157)

This energy has to be equal to the potential energy of a lumped-element systems
with Wpotmax = éUék(p, which results in the rotational stiffness of a rod of length
Lrod

Gl,

k, = . 1.158
¢ Lrod ( )

The polar geometrical moment of inertia /, of a rod with rectangular cross section
is given by

I, = B*wrodke. (1.159)
with the factor k., which for a square rod (4 = w;,q) becomes k., = 0.141, and for a

thin rectangular rod (7 < wyoq) becomes k. = 1/3.
The rotational inertia of the paddle with thickness 4 can be calculated by Bao [28]

L/2 1
I, = / owhx*dx = pwhL?. (1.160)
1) 12
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The eigenfrequency of such a rotational paddle resonator is now given by

k
2= \/ ‘. (1.161)
I<P

1.2.2 Coupled Linear Resonators

Coupled mechanical resonators are typically studied for the modelling of mechan-
ical waves in crystalline materials, where the individual atoms are represented by
lumped masses that are coupled with each other via linear springs. Besides this more
theoretical application, the rich dynamics of mutually coupled micro and nanome-
chanical resonators have been explored for various applications. Mechanically
coupled resonators have, e.g., been used for mass sensing with micromechanical
resonator pairs [29] or arrays [30]. The coupling can also happen via electrostatic
forces [31], which allow the design of bandpass filters with variable filter properties
[32]. Recently, in optomechanics, mechanical resonators have been coupled to
electromagnetic resonators [34]. In this section, a simple case of mutually coupled
mechanical resonators with equal mass and spring constant is presented. A real-
world application of such a coupled micromechanical resonator pair is shown in
Fig. 1.21. In this example, the two cantilevers which vibrate out of plane are coupled
via a shared overhang between the structures. Such a system with two identical
resonators that are mechanically coupled is schematically depicted in Fig. 1.22.

To calculate the eigenfrequencies of the coupled resonators (Fig.1.22), the
homogenous undamped system is first studied. Newton’s second law readily yields
the equations of motion

mzi + kzi + ke(z1 —22) = 0
mzy + kzo — k(21 —22) = 0. (1.162)

symmetric mode antisymmetric mode

Fig. 1.21 Schematic visualization of the symmetric and antisymmetric mode of vibration of two
mechanically coupled cantilevers
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Fig. 1.22 Schematic drawing of two coupled linear damped resonators

This linear system of equations can be solved by plugging in the standard ansatz

2 _ (A1 Lo
(0) = (). ases

which yields the linear system of equations

—w’m+ k + k. —kc Ay 0
= . 1.164

The non-trivial solutions can be found when the determinant of the system is zero
(—*m+k+k) -k =0, (1.165)

which yields two positive eigenfrequencies

k k 4 2k,
W) = 82 = \/ wy = $2, = \/ + . (1.166)

m m

Plugging in these eigenfrequencies in (1.164) gives A; = A, for £2, and A} = —A;
for £2,.

At the symmetric mode at the eigenfrequency £2; both vibrational amplitudes
of both resonators are equal. The normal mode eigenfrequency is equal to the
eigenfrequency of a single uncoupled resonator. Since both resonators are vibrating
in phase, the coupling spring k. remains unstretched. Such a symmetric mode
of coupled cantilevers is shown in Fig.1.21. For the asymmetric mode at with
the eigenfrequency £2, the two vibrational amplitudes are moving in opposite
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direction and the coupling spring is under a lot of strain, which increases the normal
mode eigenfrequency. An asymmetric mode of coupled cantilevers can be seen in
Fig.1.21.

The response of a damped and driven system, as depicted in Fig. 1.22, can be
calculated from the corresponding system of equations

mzy + ¢z + kzi + ke(z1 — 22) = Foe'®'
mzy + ¢z + kzp — k(21 — z2) = 0. (1.167)
This system of equation can readily be solved by adding and subtracting the two

equations, which results in two new equations.
Adding the equations gives

m(Zy + 25) + (@1 + 22) + k(z1 + ko) = Fpe™
) (1.168)
mqv + Cq.s + kQY = FO elwt,

with g; = z; + z2. This is of course the equation of motion (1.113) of a damped and
driven linear resonator, as discussed previously in Sect. 1.2.1. In the coupled case,
the x coordinate is replaced by the normal coordinate g;. The steady state solution
of a slightly damped system is then given by according to (1.126)

qs = 721 + 720 = A cos (ot + @) (1.169)
with the amplitude (1.124)

F()/m

.= (1.170)
\/(.QYZ —w?)? + Mw?
and the phase (1.125)
2082w
s = arctan wf— o2 (1.171)

of a single damped linear resonator of eigenfrequency £2,.
Similarly, subtracting the two equation of the general solution (1.167) gives

m(Zy —z22) +c(Z1 —22) + k(z1 —22) = Fo elet
mq{l + Ccia + kCIa =F eia)t’ (1172)
with the asymmetric normal coordinate ¢, = z; — 2. The solution for a slightly
damped system is now the response of a damped linear resonator with the

eigenfrequency §2,with the steady state solution

G =21 — 22 = Ay cos (1 + ) (1.173)
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with the amplitude

F()/m
A, = (1.174)
V(22— w?)? + Me?
and the phase
282,
¢, = arctan wf— ;202. (1.175)

The solution for z; () and z»(¢) can be obtained by adding and subtracting (1.173)
and (1.169), which gives

A, cos (ot + ¢,)

N -

z1(t) = _Ascos (ot + ¢;) +

(1.176)
Agcos (wt + @) —

ZZ(t) = Aa Cos (a)t + @a)

N = N =
N =

It shows that the general solution of the resonator system is the superposition of
the symmetric and the asymmetric mode, called the normal modes. Examples of
the average displacement (z;) of the driven mass m; is shown in Fig. 1.23. It can
be seen that a so-called normal mode splitting occurs for a strong enough coupling.
The coupling strength is typically represented by the splitting frequency

Aws = 2, — £, (1.177)

which, under the assumption k./k < 1, is given by
Awg = $2. (1.178)

From Fig. 1.23 it can be seen that the normal mode splitting becomes observable for
Awg = I'. This regime is also called the strong coupling regime.

1.2.3 Damped Nonlinear Resonators

In previous sections, the behavior of mechanical resonators and their dumped-
element models has been analyzed within what is typically called the linear regime.
This stands for the regime where the amplitude of the resonator enters linearly in
the equation of motion or, in other words, that the relation between the applied force
and the response of the resonator (at a given frequency) does not change when the
amplitude of motion becomes larger.
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Fig. 1.23 Plot of the average displacement (z;) with 2, = 1 MHz and I" = 1kHz for varying
coupling strengths (a) Aw; = 0Hz, (b) Aw; = 1kHz, and (¢) Awy; = 5kHz

Unfortunately, reality is far away from this simplistic point of view and nonlin-
earities are often encountered in most physical systems [35, 36]. The aim of this
section is to briefly introduce the different sources of nonlinearity and to show how
to solve the resulting equation of motion.

1.2.3.1 Sources of Nonlinearity
Material Nonlinearity

The most straightforward source of nonlinearity is the so-called material nonlinear-
ity and happens when the relation between strain and stress is not linear anymore.
Continuum solid mechanics dictates that for small deformations stress and strain
are related through the Young’s modulus. However, when strain becomes larger,
this ratio is modified and plasticity occurs [37]. This can be written in a nonlinear
version of the Hooke’s law (1.112), as follows

0 =Eoe+ E & +Ee+--- (1.179)

When translated to macroscopic deformation, (1.179) implies that the stiffness
of the beam will depend on the deformation, thus the equation of motion will not be
linear anymore. This source of nonlinearity can appear at any type of resonator, as it
is directly linked to the material properties. However, it is typically only visible
in either carefully engineered or very stiff structures [38, 39] where the rest of
nonlinearities are suppressed.
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Fig. 1.24 Schematic showing the cross section of a clamped-clamped beam and how deflection
induces additional strain and stress in the longitudinal axis of the beam

Geometric Nonlinearity

The second most common type of nonlinearity is that associated with the geometry
and boundary conditions of the resonator itself. This type of nonlinearity is mostly
seen in flexural (bending) modes [40-43]. A typical example can be found in
Fig. 1.24, where a clamped-clamped beam is shown and it is evidenced that a
deflection different from zero implies an effective elongation of the beam. That
elongation can only be achieved by means of developing a longitudinal stress
within the beam, which in turn causes the frequency to change, as it was shown in
Sect. 1.1.1.2. As this developed tension is proportional to the amplitude of vibration,
that is the origin of the nonlinearity.

The total tension in the structure of Fig. 1.24, with a Young’s modulus E and a
cross section area A, is the sum of an existing tensile force Ny = oA and a tension
coming from the longitudinal strain ¢ of the beam during vibration

N(u(x, 1)) = Ny + EAe

1 L au(x’ ) 2 (1.180)
=0A+EA / ( ) dx
2L 0 ox

which can be then inserted in (1.44), together with a damping ¢ and driving force
term F to obtain

0%u(x, 1) du(x, 1) *u(x, 1)
A El
PR T g TR

(1.181)
EA [f (Ou(x, 1) 2 0%u(x, t) _
— |:CTA + 5L /0 ( 9 ) dx e F(x, 1)
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where the nonlinear term, the second one inside the square bracket, starts to be
apparent, as it can be seen that the differential equation is not a linear function
of u(x, 1) anymore. Applying Galerkin’s method as introduced in Sect. 1.2.1.5 on
page 39 leads to

L L L
PAii,(f) /0 2 (x)dx + cit, (1) /0 2 (x)dx + ELu, (1) /0 ¢/ (x)dx

2

. = . (1.182)
T Foun() /0 B2+ o) ( /0 ¢:3(x)dx) — F).

From (1.182) it can be defined now the effective mass me, (1.149), effective
stiffness kef ,, effective damping rate I, and nonlinear stiffness ogr,, so that the
lumped model equation is retrieved

meff,ni/in(t) + Rff,n'kn(t) + keff,n“n (t) + aeff,n“z(t) = Fn(t) (1183)

where the intrinsic tensile stress caA is taken to be O for simplicity. Equa-
tion (1.183) can be also written as

@) + iy = O (1.184)

uy,
eff,n Meft n

Teten

ity (1) +

Keft,n
itn(l)+ eff,
m,

eff,n eff,n

which is analogous to (1.116) that is analyzed in its linear form in Sect. 1.2.1.

This derivation of the nonlinear lumped-element model can be applied to any
other type of nonlinearity and not only the geometric nonlinearity. It is good to
remember that the derivation has been done here for only one particular type of
geometric nonlinearity, which is a nonlinearity of the effective stiffness of the mode,
caused by an increase in the longitudinal tension due to motion. In other type of
flexural devices, e.g. clamped-free beams or cantilevers, it can be seen that there
are also inertial nonlinear terms that affect the effective mass [42—46]. Therefore,
for each particular type of geometry a slightly different analysis must be made.
To conclude this paragraph, it is also important to note that the lumped-model
parameters are determined through the modal shapes which, as discussed at the
beginning of the chapter, are in general not trivial to calculate and one might need
the help of Finite Element Modelling (FEM) to determine them.

Actuation Nonlinearity

The next source of nonlinearity to be analyzed here is the one emerging from a
nonlinear dependence on the displacement of the actuation force [40, 41, 47, 48]. It
is possible to understand it from the point of view of an actuation force that modifies
the potential well of the harmonic oscillator. This example is found quite commonly
in MEMS/NEMS resonators as it is inherent to electrostatic actuation, one of the
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most used actuation techniques for MEMS/NEMS. In that case, the driving force
term that is included in (1.181) takes the form:

1 bV (1)?

P = 9% (g0 — (w2

(1.185)

Equation (1.185) depends on the dynamic gap between the resonator and the
driving electrode, go — u(x, f), and the voltage applied between them, V(7). It is
possible to perform a Taylor expansion of (1.185) around gg:

bV(1)?

2
0

|:1 n 214()6, 1) 43 (u(x, t))2 4 (u(x, t))3 n (u(x, t))]
80 80 80 80

(1.186)

1
F(x, 1) =2£0

where the nonlinear terms start to become apparent. The first term in the square
bracket gives rise to the actual actuation force. The second term is a tunability term
that affects directly the measured resonance frequency, even at small amplitudes,
i.e. it does not induce nonlinearity. The third and the fourth term can be treated in a
similar way to the nonlinear terms for the case of geometrical nonlinearity, yielding
an equation of motion similar to (1.184), but that in this case has an additional term
proportional to the displacement to the square:

I n . k n n n Fn 3
l'/in(l‘) + eff, un(t) + eff, Mn(l) + ,Beff, Mi(l) + eff, Mz(l) — () (1187)
Meff n Meff n Meff n Meff n Meft n

Detection Nonlinearity

After considering the nonlinearity in the actuation, it is only logical to follow
by considering the nonlinearity in the detection. This is a very typical case of
nonlinearity, present in the majority of experiments performed in MEMS/NEMS
resonators. However, this does not affect the dynamics of the mechanical resonators,
just the conversion between the actual displacement and the measured voltage in
the macroscopic laboratory equipment. This type of nonlinearity becomes very
important to determine the actual nonlinear parameters of the system [39, 43].

Nonlinear Damping
The final source of nonlinearity to be considered here is the one that affects the

dissipation in the mechanical structure [35, 40, 49]. This is typically considered
linear, i.e. constant no matter the displacement, but in reality there is no theoretical
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deterrent for the damping not to be nonlinear. In fact, in some extreme cases this
nonlinearity in the damping can be observed and it can even dominate over the
linear damping [33]. The origins of this nonlinear damping are still unclear and
remain as an interesting field of fundamental research. In this case, the equation
of motion (1.187) must be modified including terms of the type: nefs 4, ()i, (f) or

Meff,nUn (t) ity (t) .

1.2.3.2 Solving the Nonlinear Equation of Motion

Solving a differential equation like (1.113) is relatively easy, as one can use the
Fourier transform to convert the differential equation into an algebraic one. On the
contrary, when nonlinear terms are part of the equation the solution becomes less
trivial. In this section, the approach taken by Cross and Lifshitz [35] to solve the
nonlinear equation will be followed, and it is based on assuming that the nonlinearity
is a small perturbation to the linear case. This implies that the response of the system
to a harmonic external drive will be given by a fast harmonic response modulated,
due to the nonlinear terms, at a much slower pace. This approximation is valid only
if the quality factor of the resonator Q is large enough. Indeed, one can consider the
inverse of the quality factor as the small number for which the solution is expanded
around the linear case.

In order to simplify the analysis, let us start by taking (1.184) using that kegr, =
Mern? and that Q! = Fettn

Meff n@Wn *

n . eff,n F,(t
i)+ " i) + Pun(t) + ) = O (1.188)
Qn Meft n Meff n

For this study only one vibrational mode is considered, which means that it is
possible to drop the subindexes n. In addition, it is typically a good idea to
work with dimensionless magnitudes. This way, the results hold validity in a
universal reference frame that can be translated to actual units for each resonator
independently. A normalization that is typically used consists of two steps, the first
one reads as follows:

A ~ Oleff ~ Oleff ~ w
= wyt; x:un\/ . F=F, 3 g 0= (1.189)
Meffp M@, Wy

and this converts (1.184) into (1.190) noting that now j=a

dr*

;é+g+x+5c3=ﬁcos(@;). (1.190)

The second step in the normalization is based on the fact that the quality factor of our
resonator is going to be Q > 1 and also using that the system will mostly behave
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linearly or, in other words, that the nonlinearity is going to be weak. This latter
condition is imposed by forcing the cubic term in (1.190) to be a factor proportional
to O smaller than the linear term(s). From this, it follows automatically that
the driving term has to be of the order of Q=32 Finally, it is possible to see
that the dynamics of the mode are going to be limited to a range of frequencies
around the resonance frequency, which allows the definition of the slow timescale
and frequency. Overall:

~ ~

! Wyt w w G
o 0 Q Qw, 032
and the amplitude will take the form:
1 P x1(1)
x = 2012 (A(T)e + c.c.) + 032 + -

=

_dfc_ 1 " 1dA] & x1(1) )
_d?_2Q1/2 ] +QdT e’ +c.c. +Q3/2+---,

. d% 1 PO L d’A i, +561(t)+
X "~ = — € c.c. cee
a2~ 2012 Qdr ' Q2 dT1? 032
(1.192)

where c.c. stands for complex conjugate, in order to simplify the formulas. Due
to the slow time scales, it can be seen that Eq. (1.192) has some terms scaled by
different powers of the small parameter. By plugging (1.192) into (1.190) and
picking all the terms proportional to Q~3/? we finally obtain an equation for the
slow-varying amplitude A:

dA 1 2 T

= At |A| A-ile (1.193)
The implications and fields of application of this very general equation reach far
beyond the scope of this book. The amplitude A is a complex magnitude that takes
the shape: A(T) = |A|e?e’?T which is a dimensionless representation of: u,(f) =
20 \/ e A| (ee'? e’ 4- c.c.). By plugging the shape of the amplitude into the
amplitude equation, (1.193), it is possible to reach:

g2

(2= AR+,

3 -1
tan ¢ = (2[2 - 4|A|2) ;

Al =
(1.194)
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N

Fig. 1.25 Scaled amplitude of motion of a nonlinear resonator versus the scaled frequency for
different driving forces

Figure 1.25 shows the results of Eq. (1.194), scaled amplitude of vibration (A)
as a function of the scaled driving frequency (£2) for different magnitudes of the
driving force (g). It is possible to see how for small driving forces a Lorentzian
curve is recovered, but as soon as the amplitude and drive increase, the curves
stop being symmetrical with respect to the resonant frequency, tilting to the right
showing the typical behavior of a so-called Duffing resonator. Indeed, it can also
be seen how after a certain drive, critical drive g., there are frequencies for which
three amplitudes hold Eq. (1.194) true. Out of these three solutions, one can perform
a stability analysis and see that one of them is unstable, whereas the other two
solutions are stable. This bi-stability is also typical from Duffing resonators and
it also causes hysteresis in the resonator response when performing a frequency
sweep, as depending whether you come from left to right or vice versa the final
response is different, as can be seen in Fig. 1.26.

By deriving the first equation in (1.194) one can locate the frequencies for which

the amplitude of response will be maximum, by imposing dc|1/?2\2 =0:

3 « ff
2 . e 2 .
maxs < Omaxn = @y + |un|maxs (1.195)

3
Qumax = _|A
max 8 | | 8 meffa)n

which delineates one of the most used methods to determine the nonlinear coef-
ficient, o, i.e. fitting the location in frequency of the maximum amplitude point
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Fig. 1.26 Scaled amplitude of motion of a nonlinear resonator versus the scaled frequency for
different driving forces. In this case it is shown the typical responses found experimentally, with
the different result for the sweep of the frequency in the up (darker grey) or down (lighter grey)
direction

for many actuation levels. In this case, of course, a very careful calibration of the
displacement needs to be done prior to drawing any meaningful conclusion.

It is also possible to calculate the different saddle-nodes of the resonator
response, or those points at which the behavior is supposed to transition from a
stable solution to an unstable one, and that in reality correspond to the vertical
jumps in the amplitude response that can be seen in Fig. 1.26. Those points can be
calculated by imposing d?/flz = 0, which results in two families of points, one family
for the transitions when the sweep is performed left-to-right, and another family for
the transitions when the sweep is performed right-to-left. The most interesting of
all those saddle-nodes is the one that appears the first, when both families intersect.
For that point, it is also true that ( de\g)z = 0 and it determines a parameter that is
known as critical amplitude, a., typically considered as the threshold at which the
resonator behavior starts being nonlinear:

2
_ |8 Y (1.196)

a. = <~ Uc
343 330V e

In order to avoid seeing any nonlinear effects, it is necessary to ensure that the
amplitude of motion of the resonator stays well below the critical amplitude.
However in practice, and for simplicity, it is considered that whenever the resonator
amplitude is below a., linear equations can be considered. The question then is
how much is this critical amplitude for a given structure. Evidently, this primarily
depends on the source of nonlinearity that is limiting the device under study. In the
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Table 1.4 Critical amplitudes at which the regime of geometrical nonlinearity is entered

Type of mode Type of N Direction of NL  u,

Cantilever beam—1st mode Geometric  Stiffening ~ 6.3 jg
Cantilever beam—2nd mode Geometric  Softening ~ 0.345 jQ
Clamped-Clamped beam—1st mode =~ Geometric ~ Stiffening ~ 1.46 jQ
Clamped-Clamped beam—2nd mode =~ Geometric  Stiffening ~ 1.024 \/’ 0
String Geometric  Stiffening ~ 0.56 jQ v 4

case of geometric nonlinearity, different values of the critical amplitude are shown
in Table 1.4. According to these values, this provides an idea of the magnitude of
the motion amplitude that is required to enter the nonlinear regime or, rather, how
small the amplitude should be in order to keep the behavior linear.

Other Types of Nonlinearity

To finalize this section, it is important to remember that only a simplified case
with one type of nonlinearity has been analyzed in detail. In reality there might be
many nonlinear terms affecting the resonator dynamics, and thus more complicated
analysis needs to be done. However, it can be shown that all the nonlinear effects can
be analyzed in the first order using the nonlinear stiffness that has been shown here
ot and the nonlinear damping nes. As stated before, for a more detailed analysis
the reader is invited to visit [35].
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Chapter 2
Quality Factor

Abstract The quality factor defines the rate with which a nanomechanical res-
onator dissipates energy. Low energy loss, i.e. a high quality factor, is desirable
for most applications of nanomechanical resonators. In this chapter, the three
main sources of energy loss in nanomechanical resonators are presented. Energy
can be lost (1) to the surrounding medium, which can be a liquid or a gas, (2)
through the clamping to the substrate via elastic waves, or (3) through dissipation
mechanisms that are intrinsic to the resonator. Medium interaction losses can readily
be circumvented by operation in vacuum, and clamping losses can be minimized by
an optimized resonator design. This typically leaves intrinsic losses as the limiting
mechanism defining the maximal obtainable quality factor. Intrinsic losses consist
of material friction and fundamental loss mechanisms such as thermoelastic loss
and phonon—phonon interaction loss. Generally, intrinsic losses can be reduced by
decreasing the temperature. Damping dilution reduces the effect of intrinsic loss in
resonators under tensile stress, resulting in quality factors up to several million even
at room temperature.

The quality factor (Q) of a mechanical resonator is defined as the ratio of stored
energy versus lost energy during one cycle of vibration. A high quality factor
enhances the vibrational amplitude at resonance and reduces the resonance peak
width. Both effects are, as will be seen in Chap.5 on page 149, related to the
precision with which the resonance frequency of a nanomechanical resonator can be
detected. The smallest detectable frequency change is directly determining the sen-
sitivity of a resonant nanomechanical sensor. A high Q is desired for applications of
micro and nanomechanical resonators, e.g., as mass sensors, frequency references,
or filters for signal processing. The total quality factor of a resonator is the sum of
dissipation mechanisms.

1 1 1 1 1

- + + + @.1)
Q Qmedium champing Qintrinsic Qolher

where Qmnedium Stands for all losses due to the interaction of the mechanical structure
with a fluidic or ballistic medium, Qclamping are losses from energy radiating into
the environment over the physical clamping sites of the resonator, and Qintinsic
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summarized all dissipation mechanisms happening within the resonator, in the
bulk and on the surface. Medium losses, clamping losses, and intrinsic losses are
discussed in the chapter.

Qother SUms up all loss mechanisms that are not covered by the first three. This,
e.g., includes electrical charge damping caused by charges trapped on the resonator.
Such charges induce image charges on a nearby surface. The resulting electrostatic
forces are a source of energy dissipation [1]. Another mechanism under this category
is magnetomotive damping, which results from electrical dissipation in resistive
elements due to Eddy currents induced by an external magnetic field [2, 3]. This
form of damping has to be considered particularly in nanomechanical resonators
that are transduced with magnetic transduction techniques, as discussed in Sect. 4.1
on page 116.

2.1 Medium Interaction Losses

There are roughly three different media types by which a nanomechanical resonator
can be surrounded by and which cause a energy loss. Namely, a medium can be
a viscous liquid, a viscous fluidic or a rarefied ballistic gas. In this section, the
loss mechanisms of the three particular medium types are explained and the latest
damping models are listed.

2.1.1 Liquid Damping
2.1.1.1 Resonator Immersed in Liquid

The immersion of nanomechanical resonators in viscous liquids causes substantial
energy loss. In the worst case scenario, a liquid medium can overdamp the
nanomechanical structure thereby ceasing the resonance phenomenon. The effect
of a viscous liquid on the quality factor of resonating cantilever beams has been
theoretically modelled for bending modes [4, 5], torsional modes [6], and for
bending modes of beams in close proximity to a solid surface [7]. These models
were developed with respect to the application in atomic force microscopy, where
the vibrating microcantilever probes often are immersed in water. The models
consist of numerical approximations and are not available in a short form. The
behavior of a mechanical resonator in water is therefore illustrated by means of
actual experimental data taken from literature, see Fig. 2.1. It can be seen that Q at
the fundamental mode is of the order of unity, hence the system is close to being
overdamped. The quality factor increases steadily with increasing flexural mode.
The observed trend and order of magnitude of the observed values is well predicted
by the theoretical model. However, the typically very low Qs obtained in liquid are
a major hindrance for applications of nanomechanical resonators directly in liquid.
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Fig. 2.1 Quality factor plotted against mode number of a cantilever (500 wm long, 100 um wide
and 1 pm thick) immersed in water. The experimental data (extracted from [8]) is compared to the
theoretical model by Sader [4]

Additionally to the low quality factors another challenge arises from the addi-
tional mass coming from the boundary liquid which is moved with the beam
vibration. For example, the relative mass loading ém of a rectangular cantilever
beam in the fundamental bending mode, whose length exceeds its width, immersed
in a liquid is given to a good approximation by[4, 9, 10]

§m = T Pliaia 2.2)

4 p h
for a beam with width w, height s, and mass density p immersed in a liquid with
mass density pjquiq- For a typical nanomechanical beam immersed in water, this
results roughly in a mass load of 100 %. This additional mass strongly deteriorates
the mass responsivity (see Sect. 3.1 on page 92 for more details on nanomechanical
mass sensing).

2.1.1.2 Liquid Inside the Resonator

The low mass responsivity together with the low quality factor results in a low sensi-
tivity of nanomechanical resonators when immersed in a viscous liquid. A solution
to this problem is to flow the liquid through the mechanical resonator instead of
immersing the resonator in the liquid, as schematically depicted in Fig.2.2. In this
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Fig. 2.2 Schematic depiction
of a U-tube resonator

vibrating in vacuum and Fluidin - s
being filled with a viscous
fluid

Fluid out <z

Transversal bending mode vibration

configuration, the resonator can be operated in vacuum, which results in almost
identical quality factors for an empty or filled resonator [12]. This concept has
been used for years in macroscopic U-tube density meters. More recently, micro and
nanomechanical U-tube resonators, also called suspended microchannel resonators,
have been successfully used for weighing of biomolecules [12] and nanoparticles
[13], and for density [11, 14, 15] and viscosity [16] measurements. The viscosity
detection is non-trivial because the quality factor has been shown to be a non-
monotonic function of the liquids viscosity [17, 18].

For the special case of a cantilever beam (with mass density p, a lot longer than
thick L > h, and wider than thick w > h) comprising a fluidic channel (with mass
density pliquid, length Liquig, width wyquia, and height hjiquiq), whose midplane lies
on the neutral axis of the cantilever has been theoretically modelled by Sader et al.
[18]. In this case, the quality factor of the fundamental bending mode resulting from
the flow of an incompressible viscous liquid inside the channel is given by

h w L\’
Oliquid = F(Bre) ( P ) ( ) ( ) ( ) (2.3)
Pliquid / \Miquid / \ Wiiquid / \ Miquid

with the functional

38.73
FBroy~ "y = +01521VBr, 24)
—— Large Bg, limit

Small g, limit

which is a function of the Reynold’s number

.
Bre = P l‘q“‘dh“q‘“dw, (2.5)
"
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Fig. 2.3 Plot of the normalized quality factor (2.4) of a cantilever comprising an on-axis fluidic
channel vs Reynold’s number S,

where w is the angular velocity of the cantilever vibration and p is the viscosity
of the fluid. The functional (2.4) is the normalized quality factor, it is plotted in
Fig.2.3. It can be approximated by the sum of two extreme solutions (1) for the
small Bg. < 1 limit and (2) the large Bg. > 1 limit. From Fig. 2.3 it is obvious that
the quality factor is not a monotonic function of the Reynold’s number, and hence,
for a fixed geometry, of the fluid viscosity.

The more intuitive behavior happens in the large Reynold’s number regime,
where the fluidic behavior is dominated by its inertia inside the vibrating cantilever.
This inertial flow generates viscous boundary layers, which are sources of energy
dissipation. As a result, an increasing fluid viscosity (decreasing fBg.) results in a
decreasing quality factor. In contrast, the behavior in the small Reynold’s number
regime is a bit counter-intuitive. Here, the effect of fluid inertia disappears, and
the fluid behaves like a rigid-body, that is there is no generation of lossy viscous
boundary layers. Hence, an increasing fluid viscosity results in an increasing quality
factor. The low Reynold’s number regime can be entered by reducing the fluid chan-
nel height hg,;q. It is thus possible to obtain highly sensitive suspended nanochannel
resonators with high quality factors, which results in a high sensitivity for detecting
small density changes, e.g. caused by biomolecules, cells, or nanoparticles.

2.1.2 Gas Damping

Damping of a system caused by the surrounding gas is related to the surface
area of the moving parts. In nanomechanical systems, the ratio of surface area to
volume becomes large and air damping can become the main source of energy



62 2 Quality Factor

dissipation. The pressure range can be divided into two regions where different
damping mechanisms are dominant, namely the fluidic and ballistic region. The
transition between ballistic and fluidic regime is described by the Knudsen number
(Kn), which is given by the ratio of the mean free path length of the gas (As) to the
representative physical length scale of the nanomechanical structure (L,)

Kn=" (2.6)
n= Lr .
with
ksT 1
A= 0 2.7)
' S2rd2 p

gas

where kg is the Boltzmann constant, T is temperature, dg, is the diameter of the
gas particles, and p is the gas pressure. For air at atmospheric pressure, the mean
free path is approximately 70 nm. The system is in the fluidic regime if the mean
free path length of the gas is shorter than the representative length scale Ay < L,,
that is to say Kn < 1. In this case, from the structures perspective, the gas is seen as
a continuum, and the interaction is best described by the fluid dynamic framework.
Here, the energy dissipation results from the viscous flow of the gas around the
vibrating nanomechanical structure. In contrast, the system is in the ballistic regime
if the mean free path length of the gas is larger than the representative length
scale Ay > L,, that is to say Kn > 1. In this case, the gas cannot be treated as a
continuous fluid. Instead, the dissipation is caused by the impact of noninteracting
gas molecules.

The ballistic regime is typically reached by reducing the gas pressure. However,
for small nanomechanical resonators with a representative length scale below 70 nm,
the ballistic regime can even be entered at atmospheric pressure. The measured
quality factor of a micromechanical string resonators as a function of air pressure
is shown in Fig.2.4. In this example, the representative length scale is the width
w = 14 pm of the resonating string. The pressure representing Kn = 1 is indicated
by the dashed vertical line. It can be seen that the quality factor is increasing steadily
with decreasing air pressure. Until at a pressure of roughly 10 Pa, the quality factor
approaches a plateau which is given by the intrinsic losses of the polymer resonator.

In the following subsections, theoretical models for the quality factor of vibrating
beam structures in the two regimes are presented. For simplicity, only the two
most common damping scenarios to be expected in nanomechanical resonators,
namely squeeze-film damping and drag-force damping are covered. Nanomechani-
cal structures fabricated by surface micromachining techniques typically are in close
proximity to an underlying substrate. The gas molecules which are trapped between
the substrate and the nanomechanical structure are responsible for the main gas
damping, the so-called squeeze-film damping. If the vibrating beam is far away
from a surface, the gas molecules are colliding with the moving surfaces of the
beam which is called drag-force damping.
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Fig. 2.4 Measured quality factors plotted against air pressure, for a 14 pm wide SU-8 microstring.
The dashed line shows the pressure p = 550 Pa at which Kn = 1, which represents the transition
pressure between the fluidic and the ballistic regime. (Data extracted from [19])

2.1.2.1 Fluidic Regime (Kn < 1)

In the fluidic regime the dimension of the resonators is larger than the mean free
path length of the gas molecules. In this case, the air can be modelled as a viscous
fluid. In case the acoustic wavelength in the fluid medium (phase velocity over
vibrational frequency) is larger than the representative hydrodynamic length scale
of the flow (for a vibrating beam structure this typically is the width), the models for
an incompressible fluid can be applied (see Sect.2.1.1.1 on page 58). However, for
higher vibrational modes the length scale of spatial vibration of a beam can become
larger than the acoustic wavelength in the fluid. In this situation, the gas medium
has to be modelled as a compressible fluid [20]. In a compressible gas, significant
energy is lost via acoustic radiation, where energy is carried away in the form of
sound waves.

Here, simple models based on an incompressible fluid for the squeeze-film
and drag-force damping of beams are presented. These models yield simple
approximations for the quality factor in a viscous gas. The quality factor due to
squeeze-film (sf) damping of a long beam (width w, thickness i, mass density p)
with a gap between the beam and the substrate of d; is given by [21]

phd;
w
puw?

Or—st = (2.8)

where p is the coefficient of viscosity of the fluid at a given temperature.
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Fig. 2.5 Quality factor of silicon nitride strings as a function of the string width w measured at
atmospheric pressure [23]

The drag-force damping can be approximated by a dish-string model. The drag
force of a disk can be analytically modelled. The simplified dish-string model
replaces the beam with a string of dishes with the diameter equal to the beam width.
The quality factor due to viscous drag forces (df) is then given by [21]

pwh
Or—ar = 81 w. (2.9)

As a main rule, the quality factor due to viscous damping increases linearly with
the vibrational frequency. This effect can be observed, e.g. in the measured quality
factors of silicon nitride string resonators with different resonance frequencies as
shown in Fig.2.5. When comparing (2.8) and (2.9)

3
g”fzs(%) (2.10)
)f—df w

it becomes obvious that squeeze-film damping drastically exceeding the effect of
drag-force damping if the gap distance is smaller than the beam width (dy < w).
For both nano [22] and micro resonators [23] the influence of geometry has
shown to be more complex than depicted by these simplified models for viscous
damping. It seems that there is an optimal beam width at which air damping is
minimal (see Fig. 2.5). Such effects come from the compressibility of the gas.
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2.1.2.2 Ballistic Regime (Kn > 1)

Gas damping in the ballistic regime is based on momentum transfer from the
resonator to colliding gas molecules. The energy transfer models are based on
rigid oscillating plates, as schematically depicted in Fig.2.6. The conservation of
momentum and kinetic energy during a collision for a forward movement of the
plate leads to a system of equations

/ /
miv; — mpVy = mv; + mpv,

@2.11)

1 1 1 1
2mlvl2 + 2m2v§ = zmlvi2 + Zmzvf.

Solving for the velocity of the gas molecule after the collision under the assumption
that m; > m, gives

vy = vy + 2v;. (2.12)

So, the gas molecule is faster and hence has gained energy after the collision.
However, if the plate would move backward, in direction of the molecule, the
velocity of the gas molecule after the collision would be

vy = vy — 2vy, (2.13)

and hence the molecule would have transferred energy to the plate. At first sight
it seems that the total energy of the plate remains constant during vibration, as the
energy transfer with the colliding gas molecules seems balanced. However, the net
energy loss comes from the fact that the number of collisions at the front side is
larger than the number of collisions on the back side. In other words, the “pressure”
on the front side is larger than on the back side. Based on a statistical analysis of the
number collisions with gas molecules, the following formula has been derived for
the drag-force damping of an oscillating plate in the ballistic regime [24, 25]

Before collision After collision
my my
\Z Vo my v’y m, V'
—_ <0 _> o —>

Fig. 2.6 Schematic drawing of a moving plate in rarefied gas before and after the collision with a
gas molecule
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phw [m |RgT 1
_ = 2.14
Op—at(p) A \/2\/ M, p (2.14)

where w, T, M,,, and Ry, are the angular velocity of the oscillation, temperature,
molar mass of the gas and the universal molar gas constant, respectively. This air
damping model for an isolated plate has been shown to also be valid for flexible
beams [26]. Dry air has an average molar mass of 28.97 g/mol.

A model for the squeeze-film damping in the ballistic regime has been obtained
based on similar considerations. For a beam with a peripheral length L, thickness
h and a distance dj to the substrate and a mass density p, the quality factor for
squeeze-film damping in the ballistic regime becomes [24]

. do [ReaT1
() = (27) ph _ 2.15
Op—st(p) = (27) prp\/Mm » (2.15)

Both the drag-force damping and the squeeze-film damping in the ballistic
regime are linear functions of the gas pressure. This linear behavior is visible in
Fig. 2.4, until the measured quality factor reaches the intrinsic plateau. The quality
factor as a function of gas pressure can thus be represented by the following
function, which is plotted as a grey line in Fig. 2.4

Q_l = i_mlrinsic + p (216)

with the fit parameter c;. It further can be observed that the experimental data starts
to deviate from the fit exactly at the critical pressure (dashed line) when entering the
fluidic regime, where the ballistic model ceases to be correct.

2.2 Clamping Loss

Clamping losses are caused by radiation of vibrational energy through the anchor
of a micro or nanomechanical resonator. The energy loss over the clamping
is strongly dependent on the detailed anchor geometry. Even though there are
multiple analytical models taking account for different anchor geometries, prac-
tically, the anchor geometry of a real nanomechanical oscillator differs slightly
of the theoretical scenarios. Nevertheless, the qualitative understanding based on
analytical clamping loss models helps in designing of nanomechanical resonators
with minimal clamping losses. Here, specific clamping loss models for cantilever
beams and membrane resonators are briefly introduced.
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2.2.1 Cantilever Beams

Clamping loss of singly clamped cantilever beams of the geometry shown in
Fig.2.7 has been analytically modelled by Photiadis et al. [27]. In the case that
the supporting substrate thickness is thinner than the propagating elastic waves, and
further assuming that the material properties of the base and cantilever are the same
and taking v = 0.3, clamping losses for the fundamental mode can be estimated by
the following expression

hZ
Ortoping ~ 095" 2.17)
ping L hb

where w the width and A, is the thickness of the supporting substrate. The Q o L/w
proportionality has also been derived for doubly clamped beams ending into a wide
plate of the same thickness (h; = &) by Cross and Lifshitz [28].

In the case that the supporting structure is sufficiently thick relative to the
wavelength of propagating waves, the base may be approximated as a semi-infinite
elastic medium. Again, assuming that the material properties of the base and
cantilever are the same and taking v = 0.3, the clamping loss expression changes to

o7 ~031W(h)4 (2.18)
clamping ™ Y+ L\L . :

As can be seen from (2.17) and (2.18), slight changes in the boundary conditions
result in big changes in the geometrical dependence of clamping loss. From these
two specific cases it is possible to derive a few general rules in order to minimize
clamping losses, also for doubly clamped beams. The comparison of (2.17)
and (2.18) makes it clear that clamping losses are significantly reduced with a
thick body chip which mechanically behaves like a semi-infinite substrate. But in
both cases (plate substrate and semi-infinite substrate), clamping losses are reduced
for long and slender beams. In this case the mechanical coupling into the substrate
of the vibrational energy is minimized.

Fig. 2.7 Schematic
representation of the
clamping area of a nanobeam
resonator
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Fig. 2.8 Displacement field in x (fop) and y (bottom) direction of a cantilever simulated with
HiQLab. The anchor is modelled as a semi-infinite domain by terminating it with a perfectly
matched layer (PML). Red areas experience a positive displacement blue areas a negative
displacement [29]

Clamping losses can also be determined by means of the finite element method
(FEM). The computed energy that is lost over the anchors is compared to the energy
stored in the system. In order to lose energy in a FEM simulation it is assumed that
all elastic waves radiating into the substrate would not be reflected and thus would be
lost. Therefore, the substrate needs to be modelled as a semi-infinite domain which
requires the so-called perfectly matched layer (PML) at the boundaries. A proper
PML absorbs all incoming waves, regardless of the incident angle. Figure 2.8 shows
the simulated displacement field of a micro cantilever with an anchor terminated
with a PML which absorbs all incoming elastic waves.

2.2.2 Membranes

Another resonator design for which a clamping loss model has been derived are
membranes. An analytical model based on the coupling of membrane modes to free
modes of a semi-infinite substrate has been fully developed [30, 31]. The asymptotic
limit for a square membrane is given by
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2.2

s L
champing ~ 1510 ’73 m
o 2+ )2

(2.19)
with the “acoustic mismatch” (phase velocity ratio) between a semi-infinite sub-
strate and the resonator

0~ \/ Es pr (2.20)
Ps O

with the mass densities py and p, of the substrate and resonator, respectively, and the
Young’s modulus of the substrate E;. Equation (2.19) is valid under the condition
n,m > ~/n? 4+ m2/n. Typically, n > 1 for, e.g., silicon nitride membranes and
thus the radiation loss model is valid for all n ~ m. Destructive interference of the
waves radiating into the substrate can lead to a suppression of the acoustic radiation
loss for increasing harmonic modes (n = m) [30]. From (2.19) it can be seen that
acoustic radiation loss is minimal for harmonic modes n = m and the envelope of
maximal values is increasing linearly with the mode numbers Qcjamping X 7.

It has repeatedly been shown that especially lower mode Qs are sensitive to the
chip mounting conditions and that these Qs can be increased by minimizing the
contact between chip and support [32-35]. A successful way of suppressing radi-
ation losses is to locate the mechanical structure within a well-designed phononic
bandgap structure. This removes the free frame modes around the membrane and
suppresses the probability of phonon tunnelling, i.e. radiation loss [36, 37].

2.3 Intrinsic Damping

Under intrinsic damping all energy loss mechanisms that take place within, thatis on
the surface or in the bulk of the material of the resonating structure, are summarized.
In the following Sect.2.3.1 various intrinsic damping mechanisms are introduced.
All of the presented mechanisms are valid for unstressed resonators, such as beams
and plates. In Sect. 2.3.2 on page 81, the damping dilution effect in resonators under
tensile stress is introduced. The magnitude of the dilution is given by the damping
dilution factor. The resulting quality factor under tensile stress can be estimated by
multiplying a particular intrinsic quality factor listed in Sect. 2.3.1 by the particular
damping dilution factor derived in Sect.2.3.2.

2.3.1 Intrinsic Damping Mechanisms

In this subsection, the most common damping mechanisms occurring in nanome-
chanical resonators are introduced. All the mentioned models apply for unstressed
flexural beam resonators. The damping mechanisms can be divided into two
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categories: friction losses and fundamental losses. The first category is based on
the friction coming from material imperfections that happen in the bulk and on the
surface of a resonator. The latter category are damping mechanisms constituting
the fundamental loss limits present even in an ideal frictionless material. These
fundamental loss mechanisms are based on interactions between the strain field
inside the resonator during vibration and phonons and electrons.

2.3.1.1 Friction Losses

Friction losses origin from irreversible motion of atoms during vibration. This
atomic motion can be caused by, e.g., defect dislocations in crystalline materials,
grain boundary slipping in metals, phase boundary slipping in bilayer structures, or
molecular chain movement in amorphous materials. Friction loss mechanisms are a
ubiquitous phenomenon and are best described by the anelasticity framework.

Materials which exhibit both elastic and viscous, due to friction losses, behavior
are called viscoelastic. A special type of viscoelastic materials that do not show
any lasting deformation are called anelastic. There are various models to describe
the anelastic response. These models are often represented by “spring-dashpot”
combinations which help model materials with multiple friction loss mechanisms.
The standard linear solid model (SLS) (see Fig.2.9a), also called Zener model,
is often used to describe a material with a single frequency dependent friction
loss mechanism (or relaxation mechanisms). Figure 2.9b shows the response of an
anelastic material, represented by the SLS model, to a constant stress op. From the
response it can be seen that the induced strain ¢ is lagging behind the applied stress.
From an immediate unrelaxed strain response ¢,, the material creeps exponentially
with the relaxation time 7, until it reaches the relaxed strain ¢,.

From Fig.2.9b it is obvious that an oscillatory displacement-induced stress o (¢)
and the accompanying oscillating strain &(¢) are not perfectly in phase. If the strain
lags behind the stress by a phase § for an oscillatory stress, we write

e(w) = g sin(wt)

(2.21)
o(w) = op sin(wt + §).
Using the appropriate trigonometric identity, the stress can be expanded to
o(w) = oy sin wt cos§ + oy cos wt sind. (2.22)

It can be seen that the stress consists of two components: one of magnitude
(0p cos 8), in phase with the strain, and the other of magnitude (o sin §), 7/2 out of
phase with the strain.

The stress—strain relationship can therefore be defined by a quantity E” in phase
with the strain and by a quantity E”, /2 out of phase with the strain.
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Fig. 2.9 (a) Spring-dashpot model of standard linear solid (SLS), also known as Zener model.
(b) Time response of SLS to constant stress

o = goE sinwt + goE” cos wt (2.23)
where
o
E =% coss CE" = ""siné (2.24)
&0 &0

E' and E” are the real and an imaginary part of the complex Young’s modulus
E*(w) = E'(w) + iE" (w), respectively. E’ is called storage Young’s modulus and
defines the energy stored in the specimen due to the applied strain. E” is the loss
Young’s modulus and represents the dissipation of energy.

Since the damping of a linear resonator typically is measured via the quality
factor Q (see Sect. 1.2.1) it is of interest to express the relationship between the
intrinsic material damping to Q. According to the definition (1.136), Q is the ratio
of the total stored energy over the energy lost during one cycle of oscillation.

The energy (AW) dissipated per cycle in a volume unit of material can be
calculated by

2 /w de
AW = sﬁode - / o dr, (2.25)
A dr

Substituting for o and ¢, this term becomes

2 /w
AW = we%/ (E' sin(wt) cos(wt) 4+ E” cos?(w1))dt. (2.26)
0
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The integral is solved by using the trigonometric identities sin wt cos wt = ; sin 2wt
and cos’ wt = é(l + cos 2wt), which results in

AW = mE"&l. (2.27)

The maximum energy stored in a unit volume of material can be calculated by
integrating the first term in (2.26) only over a quarter-cycle rather than over the
complete period

7/(2w)
W= E%ue%/ sin(wf) cos(wt)dt (2.28)
0

which evaluated as before gives

1
W = ZE/s(z). (2.29)

Substituting (2.27) and (2.29) in the definition of Q (1.136) yields

E/

A = g (2.30)

Ofriction = 27

This equation can further be extended by the definitions for £ and E” (2.24) which
gives the definition of tan § also called the loss tangent

/

Ofriction = 5,, = (tan 8)_1- (2.31)

Solid materials typically exhibit relatively low intrinsic damping Q@ > 100 or
tan§ < 0.01 &~ §. Hence, the dynamic mechanical characteristic can be defined
in terms of the Young’s modulus ||[E*||~ E’ = E and the quality factor due to
intrinsic material damping Qj,,. Figure 2.10 shows the loss tangent as a function
of the Young’s modulus for a variety of different materials. It can clearly be seen
that the materials typically used in micro and nanofabrication show a combination
of high Young’s modulus and low damping.

Anelastic materials can exhibit a strongly frequency dependent behavior. Further-
more, materials can have multiple relaxation mechanisms at different frequencies.
The dynamic behavior of the standard linear solid, representing a single relaxation
mechanism, can be calculated and the dynamic modulus is given by [39]

w*t?

E =E. + AE ;
(@) Ak + w?t?

T,

E’ = AE
(@) 1 + w?t?

(2.32)
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Fig. 2.10 Loss factor ( & tan§ ~ QL) of various common materials (Reprinted from [38],
with permission from Elsevier)

with

n
¢ = Ap (2.33)
being the relaxation time at constant strain with the damping constant 7, (see dashpot
in Fig. 2.9a). In contrast, the relaxation time at constant stress, as shown in Fig.2.9b

is given by

E. + AE

E, (2.34)

Ty = Tg

These equations are called the Debye equations (they were first derived by Debye
for the dielectric relaxation phenomena). The qualitative behavior of E’ and E” as
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Fig. 2.11 Variation of dynamic modulus versus w1,

functions of w7, is shown in Fig.2.11. E’ is undergoing the transition from the
unrelaxed Young’s modulus E, = E, + AE at (wt, > 1) to the relaxed Young’s
modulus E, at (wt, < 1). Hence the term relaxation mechanism is often used here
equivalently to loss mechanism. The curve E” has a maximum for @z, = 1 at which
E}. = yAE. The shape of E” is referred as a Debye peak.

The internal friction tan § can be obtained using (2.31)

1

E ¢
tan §(w) = =A et

g = AL g (2.35)

The internal friction varies as a Debye peak. Since E, and E, are of the same order
of magnitude and a lot larger than AE, (2.35) can be written as

_ Wt
erilction = tanS(a)) =A 1+ wzrz (236)
with the so-called relaxation strength
AE
A= JEE, (2.37)

where 7, was replaced by the geometrical average of the strain at constant strain and
stress T = /7,7, for generalization purposes. The internal friction has a maximum
at ot = 1 and the peak height is related to the relaxation strength A

min

Q_l = [tan §(@)]max = ;A (2.38)
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Dissipation peaks of this form (Debye peaks) are quite ubiquitous. They occur
for many different relaxation mechanisms but also for phonon—phonon interaction
and thermoelastic relaxation, as discussed in the next subsection.

In many of these examples there is not just one single relaxation time t,
and therefore one sees multiple or broadened Debye peaks. One can understand
qualitatively why there is a peak in dissipation when wt = 1 in the following
way: If the @ is much smaller than the effective relaxation rate (w < 1/7) of the
solid, then the system remains essentially in equilibrium and very little energy is
dissipated. This regime comparable to an isothermal process in thermodynamics. If
the vibration frequency is much larger than the effective relaxation rate (w > 1/7),
the system has no time to relax and again very little energy is dissipated. This regime
corresponds to an “adiabatic” process. It is only when the vibration frequency is
on the order of the system’s effective relaxation rate that appreciable dissipation
occurs (2.38). The full picture may be more complicated.

Time-Temperature Equivalence

Besides being frequency-dependent, as shown in this section, relaxation mech-
anisms are also dependent on temperature. The principle of time-temperature
equivalence implies that a specific relaxation mechanism in the material can equally
be crossed by either changing the frequency or temperature. The damping behavior
at one temperature can be related to that at another temperature by changing the
time-scale, that is the frequency, as illustrated in Fig.2.12. The two temperature
responses are connected via the shift factor ar.

During a material relaxation the storage modulus, as depicted in Fig.2.11, is
crossing between two energy levels E, and E,. Hence, such a transition can be
modelled as a two level system, in analogy to the two energy levels, e.g., of a
chemical reaction. The jump between the levels requires the activation energy
AH. Such a transition with a constant activation energy can then be described by
Arrhenius’ law [40]

AH

w=0w e kT, (2.39)
tan &
A Tl To
\ log ar /
» log w
w1 Wy

Fig. 2.12 Schematic illustration of the time-temperature equivalence
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Fig. 2.13 Schematic illustration of a Debye peak in the frequency and the temperature domain, for
areference temperature Ty = 300K at wyt, = 0.1, damping strength AE/E = 0.1, and activation
energy AH = 1000kg

With (2.39), the shift factor ar, introduced in Fig.2.12, can now readily be
calculated

logar =
CAH (11
ks \TW To)’

With the shift factor it is possible to describe the Debye peak (2.36) as a function
of temperature

(2.40)

oveexn {3 (3 - 3}
Ersagizep 24 () - 1)}

A transition through a Debye peak in the frequency and the temperature domain
is visualized in Fig.2.13. This shows that a material relaxation mechanism can
be crossed either by varying the frequency or the temperature. In the example the
frequency was fixed below the peak maximum. The transition can then be crossed by
lowering the temperature. For relatively large activation energies small changes in
temperature (within one order of magnitude) have the same effect as large changes
of frequency (over four orders of magnitude). Hence, to measure material transitions
it is a common technique to fix the oscillation frequency and ramp the temperature.

From Fig. 2.13 it becomes further evident that specific damping mechanisms can
be frozen out. Width decreasing temperature, after the Debye peak transition, the
loss tangent diminishes quickly.

Orriction(T1) = tan§ = (2.41)
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Fig. 2.14 Intrinsic quality factors of silicon-rich silicon nitride membranes as a function of
membrane thickness. Data taken from [43]

Surface Friction

Surface friction loss can be the dominant source of damping in submicrometer
thick beams when the surface-to-volume ratio increases. Surface loss is assumed
to be caused by adsorbates on the surface [41], surface roughness [42], or surface
impurities, e.g., as a result from fabrication processing [43]. Surface loss has, e.g.,
been found to be the dominating damping mechanism in nanomechanical silicon
nitride cantilevers [44], and strings and membranes [43]. An estimate of surface
loss is given by [41, 44]

0 _ wh E (2.42)
surface — 283(3\4/ + h) Eg .

where 85 and EY are the thickness and the loss Young’s modulus of the lossy surface
layer and w is the beam width. For a wide beam (w > h), surface damping becomes
proportional to the inverse of the beam thickness

Qe = = E (2.43)
surface — 655 E_/g/ . .

This linear proportionality with the resonator thickness has, e.g., been observed with
silicon nitride membranes of various thickness, as shown in Fig. 2.14.

2.3.1.2 Fundamental Losses

In this subsection, two particular fundamental loss mechanisms are introduced,
namely thermoelastic loss and phonon—phonon interaction loss (also called
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Akhiezer damping). Both mechanisms are coming from non-reversible heat
flow inside a solid under period deformation. The heat flow (thermal relaxation)
generated entropy which causes loss of energy. In thermoelastic damping the
thermal relaxation happens between strain-induced temperature differences in
different spatial areas in the solid. In contrast, in Akhiezer damping the thermal
relaxation happens between strain-induced temperature difference in normal modes
of the atomic lattice.

Similar to the description of friction losses discussed in the previous subsection,
the two particular fundamental losses discussed in this subsection can be modelled
with Zener’s approach as Debye peaks [see (2.36)]

wT

—1 _
0 (@) = Al + (w7)?

(2.44)

with the particular relaxation strength A and relaxation time 7. The maximal loss of
;A is reached when wt = 1. In contrast to friction losses, the relaxation strength
and relaxation time for the fundamental losses can be modelled precisely. Also,
where the temperature dependence of friction loss mechanisms is described by a
chemical approach, by means of Arrhenius’ law, fundamental losses have a known
linear temperature dependence. Both mechanisms discussed subsequently linearly
decrease with temperature.

Additionally to the two loss mechanisms discussed in the subsection, there are
other fundamental mechanisms. For example in materials with free electrons, such
as metals and semiconductors, elastic waves can also interact with the electron-
cloud. Acoustic waves can induce forces on electrons. Energy is dissipated by
Joule heating from the resistive electron-movement. This so-called phonon—electron
interaction loss in conductor will not be discussed here. More details can be found
elsewhere [45].

Thermoelastic Damping

Strain due to the mechanical motion generates differences in the temperature at dif-
ferent locations in the resonator. The strain field is coupled to the temperature field
by the material’s thermal-expansion coefficient ¢y, of the resonator material. The
locally generated heat flow between points of different temperatures is irreversible,
that is it creates entropy, which results in energy dissipation. This intrinsic damping
mechanism is called thermoelastic damping, and was measured in micromechanical
silicon resonators for the first time by Roszhart in 1990 [46].

During transverse flexural vibration of an unstressed beam, one side is under
compression while the other side is under tension. The side under compression
becomes warmer while the side with tension becomes colder. This temperature
gradient across the beam thickness causes the energy loss. The thermoelastic loss
for a beam under transverse flexural vibration has been solved by Zener in the 1940s
[47] and is approximately given by
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Eo2 T,
Atgp = 70 (2.45)
Cp
and the relaxation time
h2
TED =, (2.46)
X

where y = k/(pcp) is the thermal diffusivity of the material. « and c,, are the thermal
conductivity and the specific heat capacity, respectively. trgp is the characteristic
time required for the heat to diffuse across the beam thickness. The maximum
energy in an oscillation cycle is lost if the cycle time of the resonating beam is
similar to ttgp which is the time the heat needs to relax over the beam thickness. For
lower vibration frequencies, the system stays more or less in equilibrium (isothermal
state) and only little energy is lost. If the frequency of vibration is higher than the
relaxation rate of the heat flow, the heat has no time to relax (adiabatic state) and
again very little energy is lost.

The exact expression for thermoelastic damping in vibrating thin beams was
obtained by Lifshitz and Roukes in 2000 [48],which has shown that Zener’s model
is an accurate approximation. Thermoelastic damping has also been modelled for
bilayered beams [49].

Phonon-Phonon Interaction Loss (Akhiezer Damping)
Phonon—phonon interaction loss is a fundamental source of dissipation in crystalline
material. The loss comes from the Akhiezer effect, which is the interaction of
an oscillating low-frequency strain field with the existing high-frequency atomic
thermal motion in a crystal lattice. The oscillating deformation periodically dilates
the atomic crystal. The dilatation changes the elastic constant in the crystal, which
changes the normal mode frequencies of the atoms. The effect of the dilatation on
the normal mode frequencies is described by the Griineisen constant Y. A positive
dilatation (stretching) causes a frequency decrease (reduction of the temperature),
and a negative dilatation (compression) causes a frequency increase (increase in
temperature). However, the oscillating strain does not act on all normal modes
equally. Hence, a deformation results in a temperature difference between different
normal modes. During a periodic low-frequency deformation, the modes with
different temperatures relax toward the mean temperature value. In this way, energy
is lost by an increase of entropy from the heat flow between phonon modes with
different temperatures.

Under the assumption that the strain field frequency w is lower than the thermal
phonon frequency (higher THz-regime), Akhiezer damping can be modelled by
Zener’s approach with a Debye peak with the relaxation strength [45]

¢ppToy?

p (2.47)

AAkhiezer =
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Fig. 2.15 Quality factors of vibrating beams due to thermoelastic and Akhiezer damping esti-
mated for four typical nanomechanical materials as a function of beam thickness . and flexural
frequency w/(27). The gray dashed and dotted lines represent the loss maxima for thermoelastic
and Akhiezer losses. The black lines show the fundamental resonance frequencies of a doubly
clamped beam resonator (bridge) of the specific material for two different ratios of length L to
thickness 4. The plots are based on the specific material properties listed in Table 4 in [50]

and the thermal relaxation time

3k
TAkhiezer = . (2.48)
ok

The intra-mode relaxation happens on a very short time-scale, typically in pico-
seconds. Hence, the effect of Akhiezer damping first becomes important at frequen-
cies in the higher GHz-regime.

In Fig. 2.15 the combined quality factor expected for thermoelastic and Akhiezer
damping (Q~! = Q;ED + Q;ﬁhiezer) of flexural beams of various materials is plotted
as a function of the beam thickness 4 and vibrational frequency w/(27). It can be
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seen that the two fundamental loss mechanisms are strongly material dependent. On
the one hand, thermoelastic damping in a typical nanomechanical beam (10 < i <
1000nm and L/h > 100) allows for very high quality factors of the fundamental
mode of more than a million for silicon. For thick silicon nitride beams, on the other
hand, thermoelastic damping can become the limiting loss mechanism, an effect that
has been observed with singly clamped cantilevers [44]. As a general rule, the effect
of thermoelastic damping can be circumvented by designing thin beams (absolute:
h < 1wm, and relative: L/h > 100). Phonon—phonon interaction loss (Akhiezer
effect) first starts to play a role at rather high frequencies in the GHz-regime, which
can be reached with very thin (2 < 10nm) and short (L/h < 100) beams. Higher
order flexural modes increase the vibrational frequency which generally increases
the effect of thermoelastic and Akhiezer damping.

2.3.2 Damping Dilution in Strings and Membranes

In the search for high-Q mechanical resonators, in 2006 Verbridge et al. [51]
have found that highly stressed silicon nitride nanostrings have extraordinarily high
quality factors compared to corresponding cantilever beams in the same frequency
range. They showed that Q is increasing for long strings and has obtained maximal
Q values of over a million for 325 pm long nanostrings [52]. A similar finding
was made with silicon nitride membranes which showed quality factors of over one
million at room temperature [53]. The observed increase in Q is coming from a
stress-induced damping dilution [54, 55], as will be discussed here.

As per the definition, Q is the ratio of stored versus lost energy over one cycle
of oscillation. In the case of, e.g., a cantilever, the energy is stored and lost by its
bending. In contrast, strings and membranes can additionally store and dissipate
energy in the lateral elongation during vibration. But most importantly, string and
membranes build up a lot of potential energy when the vibrational deflection has to
work against the high lateral tensile stress. According to (1.136), the quality factor
of a string or a membrane can be described by [19, 35]

T Wtensile + Welongation + Wbending

0=2
A Welongation +A Wbending

(2.49)

where Wiension 1 the stored elastic energy required to deflect the string against the
tensile force. AWeiongation and A Whending, and Weiongation and Whending are the lost and
stored energy due to elongation and bending, respectively.

Assuming that the magnitude of the tensile pre-stress is dominating the mechan-
ical behavior in strings and membranes, and by defining the intrinsic damping,
as introduced in Sect.2.3, to be equal for elongation and bending Qjnrinsic

. _ Welongation _ . _ Wbending
Qelonganon = (27T AWelongation - Qbendmg - 2m AWoending )? (249) can then be
simplified to
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0O ~ add * Qininsic (2.50)

with the damping dilution factor

0y = |: Wbending + Welongation :| ! ) (25 1)
Wtensile Wtensile

Since, by definition, in a string or membrane Wieysile 15 a lot larger than the energies
stored in bending and elongation, the damping dilution factor becomes larger than
unity. This means that large potential energy from by the tensile stress is “diluting”
the intrinsic losses and Q gets enhanced.

The effect of the additional energy stored in the tension described in (2.49) can
also be looked at from a different angle. According to (1.143), the quality factor is
the resonance frequency f, divided by the peak width Af.

0=" o1 2:52)

Thus, the tensile tension increases the resonance frequency (which is equal to the
stored energy) while the peak width (which is equal to the damping or energy lost)
remains constant. Assuming that an added tensile stress does not alter the intrinsic
losses (Af = constant), the tensile stress increases the frequency and hence the
quality factor.

2.3.2.1 Damping Dilution in Strings

The damping dilution in strings can readily be obtained from (2.51) based on the
respective energies and the respective string modeshape given by (1.64)

U(x) = Upgn(x) (2.53)
with the normalized modeshape
¢n(x) = sin(B,x) + I'ZU [e7P5* — cos(Box) ] (2.54)
sin:s/h-ape ‘E -~ -
edge shape

and the wavenumbers related to the tensile stress 8, = /" and flexural rigidity of a

oA
ElL’

The energy stored in the work against the tensile stress can be calculated from
(see Table 1.1)

membrane fg = respectively.
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Fig. 2.16 Qualitative illustration of the tensile energy density in a string of length L
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~ UZoALB?. (2.55)

Apparently, the tensile stored energy can be approximated by a single term coming
from the bending of the sinusoidal modeshape. The effect of the exponential edge
term in (2.53) is relatively small and can be dismissed for the calculation of the total
tensile energy, as can be seen from the tensile energy density plotted in Fig.2.16.

Similarly, the energy stored due to the string bending can be calculated (from
Table 1.1)

2

Wbending - (3)(2) dx
0
1 1
~, USELBIL + 5 USEL B2 B, (2.56)
s1n;’l:1pe edg;:l:ape

which results in two terms: one coming from the anti-nodal bending of the sine
modeshape, and a second coming from the bending at the edge where the string is
clamped. The bending energy density is illustrated in Fig. 2.17. From this plot it can
be seen that the highest bending energy density is located near the edge of the string.
Equally, the energy stored in the elongation of the string is (from Table 1.1)

) L ou 4
Welongation = SEA A 9x dx

~ S USEALBL. (2.57)

Similar to the tensile energy, the elongational energy can be approximated by a
single term coming from the sine modeshape. The effect of the exponential edge
correction can be dismissed.
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Fig. 2.17 Qualitative illustration of the bending energy density of a string of length L

With (2.62), (2.56), and (2.57) the damping dilution factor (2.51) for the “one-
dimensional case” of a string can now readily be calculated

-1

B\, 2 L 9(U\(Bs)
o = + + . 2.58
dd.1D £ By Bil 4 s By 5 (2.58)
Whending Welongation
Wiensile Wiensile

The first two terms coming from the bending energy are independent of the
vibrational amplitude Uy. In contrast, the last term coming from the energy stored in
the string elongation is a function of the amplitude squared. At large amplitudes, the
elongational energy is accruing and the measured quality factor becomes a function
of 0 o Uy 2. Such a measured effect could be interpreted as nonlinear damping
as introduced in Sect. 1.2.3, but in reality it simply is an effect coming from the
amplitude dependency of the damping dilution. Such an effect could readily happen
when, e.g., measuring on ultrathin graphene resonators (¢ = 0.35nm). In most
cases, the amplitudes are a lot smaller than the resonator thickness and the damping
dilution factor (2.58) can be reduced to the influence of the bending energy only

-1

B\, 2
~ , 2.59
Qdd, 1D K,BE -/+ Bil (2.59)

sine shape edge shape

. . . . . 3
which for a string with rectangular cross section with I, = ‘”;z becomes
—1

| am)?E () 1\/5 h
Odd, 1D = 1 a(L) +\/3 G(L) . (2.60)

- = -
sine shape edge shape
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Fig. 2.18 Schematic drawing explaining the damping dilution in strings (2.59) for generic bending
related damping mechanisms Qi = QObending- The first term comes from the damping due to the
sinusoidal string bending. The second term comes from the local bending near the clamping

This form of the damping dilution factor had first been derived in 1994 for the case
of a loaded wire [54]. It had been confirmed in 2012 by Yu et al. for Qs in micro and
nanomechanical silicon nitride resonators [56]. Since & < L, it becomes obvious
that the right term in (2.59), representing the effect of the edge bending, is a lot
larger than the left term, representing the effect of the anti-nodal sine bending of
the string. This means that energy loss near the edges is dominantly defining the
quality factor in strings [35, 56]. The contribution of the energy loss due to the
sinusoidal bending of the string (left term in brackets) becomes only important for
short strings at higher mode numbers. A schematic explanation of the equation is
shown in Fig.2.18. And in Fig.2.19 the damping dilution model is compared to
measured Q values of nanomechanical silicon nitride string resonators. It shows
how the quality factor decreases for increasing mode numbers and decreasing string
length. The resulting intrinsic quality factor Qininsic from the comparison has been
proposed to be due to surface losses as discussed in Sect. 2.3.1.1 on page 76 [43].

2.3.2.2 Damping Dilution in Membranes

The damping dilution factor for a rectangular membrane with lateral dimensions L,
and L, can readily be calculated from (2.51) with the membrane modeshape function

u(x,y) = Uppa(x);(y) (2.61)

with the normalized modeshape functions (2.54) in x and y direction.
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Fig. 2.19 Q values for increasing flexural modes of nanomechanical stoichiometric SiN strings
with varying lengths (¢ = 942 MPa, h = 100nm) (data taken from[57]). All quality factors for
the strings with different length are fitted with (2.60) with a single Qiytrinsic = 4400

The energy stored in the work against the tensile stress can be calculated from
(see Table 1.1)

Le b f (9 du(x,y)\
W oh/ / {(u(xy)) +(u(axyy))}dxdy

1
~ UsohLiLy (Bs + B3,) (2.62)

with the membrane wavenumbers f,, = ' and f;, = ’L” . The energy stored due
to the string bending can be calculated with (from Table 1.1)

W Dp /L* /LV 0u(x,y) azu(x,y) 2
bending — axz ayz

2 2 2 2
+2(1—v) [(a ;‘gyy)) 0 ”gi;’y) 0 'g(;y)}} dxdy (2.63)

with the flexural rigidity Dp = Eh*/(12(1 — v?)). For a homogeneous membrane
with constant thickness clamped at all four boundaries, the second term in (2.63)
becomes zero according to Green’s theorem [56]. The bending energy can thus be
calculated by the simplified form
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Dp (L b Pulx,y)  0%u(x,y) ?
W ending = dxd
bending 2 A /0 {( ax2 + ayz y
1

2.64)
2 1 (
~ GDILL (B4 o)+ | 2DsBE (B2, + L),
~ _ - N~ _ —
sine shape edge shape
with the flexural wavenumber g = \/ gﬁ . The bending energy in a membrane,

similar to the string case presented in the previous subsection, results in two terms:
one coming from the anti-nodal bending of the sine modeshape, and a second
coming from the bending at the edge where the membrane is clamped.

For small vibrational amplitudes, the “two-dimensional” damping dilution factor
for a rectangular membrane then becomes

- —1

( g,x + lBg,y) 2 (LXIBg,y + Lyﬂg,x)

Odd 2D ~
,3% IBE LxLy (:Brzy,x + 13(27})
—— - - —_ -
sine shape edge shape

(@ @)l

(2.65)

%

which can further be simplified for a square membrane (L, = L, = L) and assuming
zero transversal strain (v = 0)

-1

2+ E (B 1 \/E h
~ . 2.66
®dd 2D 2 . (L) + sVo (L) (2.66)
sin:s/h-ape edg-e:}-lape

The resulting damping dilution factor for a square membrane is very similar to the
factor for a string with rectangular cross section (2.60).
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Chapter 3
Responsivity

Abstract A change of mass or temperature, or an applied force causes a response
of a mechanical resonator. The response can, e.g., be a change in frequency or
vibrational amplitude. The responsivity of a mechanical resonator is the linear
slope of the response to a particular stimulant. In case of a sensor application, the
responsivity to the input parameter to be measured should be maximal. However,
the responsivity to other inputs, such as a change in ambient temperature, should
be minimal in order not to cause an unwanted cross-response. In this chapter, the
responsivities of micro and nanomechanical resonators to mass (distributed and
point masses), forces, and temperature are discussed.

The rational to develop nanomechanical resonators is to achieve unique sensors with
exceptional sensitivities. In this chapter the response of nanomechanical resonators
to various physical parameters such as mass, temperature, or force are discussed.
The terminology used with regard to sensors and detectors differs from field to field.
Therefore the main terminology used in this book is now quickly introduced.

* Responsivity (%) is the slope of the sensor output as a function of the input
parameter to be measured. The responsivity is constant over the linear range of
the sensor.

» Sensitivity is the smallest detectable change of the input signal with a specified
signal-to-noise ratio.

* Response time is the time it takes by a sensor to approach its true output when
subjected to a step change of the input parameter.

With a few exceptions, the responsivity of micro- and nanomechanical resonators
is the change of a resonance frequency as a function of a specific parameter £, which
can be, e.g., mass, force, or temperature. Additionally, the resonators are assumed to
be only slightly damped, such that the resonance frequency can be approximated by
the eigenfrequency £2 (1.132). In that case, the responsivity at a reference parameter
value & is given by
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Fig. 3.1 Eigenfrequency 2 c
of a linear resonator as a

function of an arbitrary input
parameter £. The red line
represents the slope at &,

which is the responsivity %

6 £

Assuming that the change of the parameter to be measured A£ is small, the resulting
response can be linearized, as schematically depicted in Fig. 3.1

AS$2
X =~ At 3.2)

and the sensitivity, that is the smallest detectable value of the parameter A&y, is
approximately given by

Agmin ~ L@_IAQmim (33)

where A$2;, the minimum detectable resonance frequency change. The frequency
resolution and thereby A£2, is determined by the noise of the system originating
from both the read-out circuitry and the resonator itself, as discussed in Chap. 5 on
page 149.

Often, the frequency resolution relative to the resonance frequency §$2min =
AR2min/ 2 (&) is given, typically in parts per million (ppm) or billion (ppb). In that
case it is more useful to work with the relative responsivity 8% = % /52 (§y) and the
sensitivity is then given by

Abmin = 278 Q2nmin. (3.4)

3.1 Frequency Response to Mass

The probably most prominent sensor application for nanomechanical resonators
is the detection of small masses. From Eq.(1.147) it is clear that the resonant
frequency depends on the vibrating mass. According to the definition in the
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introduction, the responsivity % for a resonant mass sensor is defined by the change
of resonance frequency due to a change in mass. For slightly damped resonators,
the responsivity of a linear lumped-element oscillator, as shown in Fig. 1.16, is thus
given by

082 (me
a =20 — L (5)
Ommege 2mesy
and the relative responsivity is
1
O = — . (3.6)
2mege

Thus, in order to obtain a high responsivity the resonator must have a low
effective mass mg. This is one of the main rational behind the development of
nanomechanical resonators which have a mass typically below 1 ng.

The mass loading can happen in many ways. Here two common scenarios are
discussed, namely point mass loading and distributed mass loading.

3.1.1 Point Mass

In the previous section the mass of adsorbed molecules is assumed to be distributed
uniformly over the resonator surface. This approach is not viable if single molecules
or particles are to be measured, since the change in frequency is dependent not only
on the mass of the attached particle but also on the landing position on the resonator
[1]. This is due to the shape of the vibrational modes. The areas of the beam with a
large vibrational amplitude are areas where an added mass will gain a high kinetic
energy and thereby change the resonant frequency considerably compared with the
nodal points where a point mass remains unmoved.

Considering a cantilever with the mass mg loaded with a point mass Am
positioned at x,,, as schematically depicted in Fig. 3.2. If the mass load is much
smaller than the resonator mass, Am < my, the cantilever mode-shape will not
change significantly, and the resonant frequency of such a system can be accurately
estimated using an energy approach. According to Rayleigh’s method (1.1), the
time average kinetic energy, Wiy, equals the time average strain energy, Wiirain, at
resonance. In the case of a resonator with an additional point mass with the kinetic
energy Wiin.am, the total energy balance becomes [2]

Witrain = Wiin + Wkin,Am- (37)
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Am

Fig. 3.2 Schematic of a cantilever with a single bead, having the mass Am, positioned at z,,

The kinetic energy of the cantilever is

1
Wi = [ 200,200V
v
(3.8)
1 2 2 t 2 15
= 2Ap[2n’Amun ¢, (x)dx = ZanQn’Ammeff,
0

where $2, A is the frequency of motion with the additional mass, ¢,(x) is the
normalized mode-shape function of the n’s mode, and a, is the modal amplitude
of each mode, and the effective mass (1.149)

L 1 L
mar=pa [ gwac=m, [ g2oa (3.9)
0 0
The kinetic energy of the added point mass Am at xa, is

1
Wyin, am = 5 AmS2} 4,,a2h7 (X am)- (3.10)

n,Am“n

Assuming that neither the mode-shape nor the moment of inertial will change sig-
nificantly due to the added mass, the strain energy in the cantilever is approximately
equal to the kinetic energy of the cantilever without the added mass:

1
Witrain ~ zmeffwg- (311)

With (3.7), the eigenfrequency of the cantilever with the added mass then becomes

A -1
20 =2 (14 2" 020 3.1
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Since the additional mass is assumed to be a lot smaller than the cantilever
mass, (3.12) can be simplified by a Taylor series approximation

1 Am

poam ~ 2,1
4 ( 2 Mgt

¢3(xAm)) : (3.13)

The point mass responsivity according to (3.5) then becomes [2—4]

A2, 2,
Hp=", " == G2 (Xam) (3.14)
m 2Mef

and the respective relative responsivity is

1

8% =—_  ¢r(xam) (3.15)
2mege

with the frequency shift A2, = 2, on — §2,. From (3.14) it is obvious that the
position of the mass has to be known prior to the calculation of the mass itself.
Hence, there are two unknowns, namely the position x4, and the mass Am. Both
unknowns can be obtained by creating a system of equations with (3.14) based on
at least two vibrational modes n.

3.1.1.1 Strings

The single mass detection with strings is discussed first. The sinusoidal mode-
shape function allows for a simple analysis [5]. With the mode shape function of
a string (1.46) with length L

$n(x) = sin (”Zx) (3.16)

where n is the mode number, and the effective mass (see Table 1.3) mei = émo,

with the total string mass my = pAL, the point mass Am positioned at x,,, can
readily be found from the responsivity (3.14)

A A2, . _, (mr ) (3.17)
m= —m, sin XAm ). .
0 2, LA
The point mass Am and its position x,,, are the unknowns of a defined second

order system of equations based on (3.17) for the first two bending modes. For the
first bending mode (n = 1), (3.17) can be solved for the position

L . myp A.Q] (3 18)
XAm =  arcsin 4/ — . .
4 T Am §£24
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The absolute string displacement is symmetrical and it does not make a difference
on which half side a point mass is added to the string. The resulting frequency shift
is the same. Therefore, the positions resulting from (3.18) have only values from 0
toL/2.

The mass ratio of the point mass versus string mass can now be obtained by
substituting (3.18) in (3.17) for the second mode (n = 2). By using the identity
(sin (2 arcsiny) = 2y \/ 1 —y2), a simple term for the relative point mass can be
calculated

2
A2
Am 4( .Q]l)
N (3.19)

Mo 2 2

The used identity holds only if |y| < 1. It can easily be shown that this condition is
fulfilled if x4, < L/2 which is in agreement with the before mentioned symmetry
of the string vibration.

With (3.19), the relative particle position (3.18) can be readily calculated

XAm 1 ) 1 A2, $24
= 1-— . 3.20
. , arcsin \/ 42 AQL (3.20)

Both the relative position (3.20) and the relative mass change (3.19) are plotted in
Fig. 3.3 as a function of the relative frequency shifts for the first and second mode.
It can be seen that the resulting masses are collapsing for particle positions close

200 FEo— . . . -
]7=~~o Xam/L
| 045
150l / 1
= -~ 0.35
o
g 100f--L__ /. { 5025
% 0.15
50 1 ‘0.05
0 . . 4 - Am/my
0 50 100 150 200
—AQo/Qo[ppm]

Fig. 3.3 Visualization of the particle location (3.20) and corresponding particle mass (3.19) as a
function of the relative frequency shifts of the first and second bending mode
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to the clamping site. The real measured relative frequency changes have a certain
imprecision, as discussed in detail in Chap.5.2 on page 163. Hence, masses that
land close to the clamping, where the dashed mass lines collapse, will produce a
highly imprecise mass response.

Assuming a single uncertainty for the relative frequency shift of both modes oy,
the uncertainty of the relative mass change (3.19) is given by the Gaussian error
propagation for uncorrelated variables

9 Am \ 2 9 Am \ 2
O = 0q @ﬁ;)+(&gJ. (3.21)
2 2

With (3.19) and (3.20) the mass uncertainty (3.21) can be transformed into a
function of the mass position x4,

| cos (47 ¥4m
Im _ Y 1oy ( Lo (3.22)
og 4 (sin (T *2m))

which is plotted in Fig. 3.4a. It shows that there are two regimes. For a position in
the string center (0.25 < xa,/L < 0.75) an error in the frequency measurement
translates directly into an error in the calculated mass with a factor of unity. For a
position close to the clamping sites (0 < x,/L < 0.25 and 0.75 < xa,/L < 1) an
error in the frequency measurement is amplifying the mass uncertainty. Therefore,
in single mass detection, masses that land at the ends of the resonator are typically
dismissed and only masses that land in the center (0.25 < xa,/L < 0.75) are
considered for the measurement, that is only 50 % of the sensor surface are used
[3, 5], as depicted in Fig. 3.4b.

3.1.1.2 Beams

The more complex modeshape function of beams (cantilevers and bridges) is more
complicated and does not allow the derivation of a closed-form solution, as done
for strings in the previous section. The point mass responsivity according to (3.14)
of cantilevers and bridges can be calculated by means of the respective normalized
mode shape functions (1.34) and (1.43) as derived in Sect. 1.1.1, and the respective
effective masses (see Table 1.3 on page 39) mey = imo and mer =~ émo,
respectively.

If a single point mass is adhering to the cantilever, and the change in resonant
frequency of several modes is measured, both position and mass can be calculated.
For this purpose, based on the resonant frequency changes two column vectors are
constructed
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10% ¢ 1

104 ¢ E

om/og

100 ¢ 3

10} .

10F ey e— ]

0.5 i

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 3.4 (a) Ratio of mass to frequency uncertainty o,,/0¢ (3.22) as a function of the relative mass
position x,,, /L along the length L of the resonator. (b) Mode shape plots of the first two modes
with the active area available for mass sensing marked red

¢12(xAm) A{-Zl
¢%(xAm) A_ézz

d(xam) = . 8= T . (3.23)
¢r%(xAM) A_ann

The size of the vectors is determined by the number of measured vibrational modes,
with a minimum of two modes required to determine the position. Equation (3.14)
can now be written as
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52 = — M bean). (3.24)
ff

2me

This problem cannot be solved numerically. Therefore first, the particle positions
are recovered by creating a term that can be minimized numerically. This is done by
creating a normalized scalar product which approaches unity when ¢ (x,,) and 652
become collinear, that is when (3.24) is satisfied.

9(xan) 82|

_ . (3.25)
el o]

E(xam) =1

The position x,, can now be found by numerically minimizing £. From the
computed position the relative mass change induced by the individual particles can
then readily be obtained by

Js=]

. (3.26)
| Ceam)||

Am = —2meff

This minimization technique has been extended to detect to multiple masses on a
single cantilever by measuring the frequency shifts of multiple resonance modes [6].

A different approach to calculate the mass and position is by mapping the plane
of the frequency-shifts to the plane of the mass and position (as plotted for a bridge
in Fig.3.5) via a bivariate transformation by treating the variables as independent
probability density functions [3].

The latest development in the field of nanomechanical mass sensing is the
detection of the mass density distribution of a point mass, which allows to gather an
inertial image with non-diffraction limited resolution [7].

3.1.2 Distributed Mass

A common way of using a nanomechanical resonator as mass sensor, e.g. for
gravimetric gas sensing, is, e.g., by coating the top surface of the resonator with
a sensitive layer that absorbs the gas to be detected, as schematically depicted in
Fig.3.6. The gas is then absorbed in the sensitive layer which increases the total
resonator mass. Under the assumption that the additional mass does not alter the
stiffness of the resonator, the absorbed mass can be interpreted as an increase in
mass density of the resonator.

In the case of an evenly distributed mass over the sensor surface area, the figure
of merit becomes the mass sensitivity per surface area Ag, instead of thetotal mass
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250

200

8fi/fy (ppm)

50 100 150 200
81, Ifp (ppm)

Fig. 3.5 Visualization of the particle location (3.20) and corresponding particle mass (3.19) as a
function of the relative frequency shifts of the first and second bending mode of a nanomechanical
bridge. The black straight lines represent the location x4, = a. Colored lines represent the relative

mass change Am/meg in ppm (Reprinted from [3])
Fig. 3.6 Schematic of a

cantilever with an additional
mass Am evenly distributed

over the entire surface area
Am /

sensitivity. The distributed mass sensitivity for a small additional mass can then be

approximated by

A 1
o Aw=%"Aw (3.27)

A ~
MDA T AR D

with the distributed mass responsivity

Ay
By =AR =—_" 2(mp) (3.28)
2m0
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and the respective relative responsivity

Ay
8%Fp =—_ (3.29)

2m0

where Aj is the surface area that is homogeneously covered with additional mass.

3.2 Amplitude and Frequency Response to Force

A nanomechanical resonator responds to force in two ways. A force can either
directly influence the vibrational amplitude of the resonator, or if the force has
a gradient its effect can be measured via a frequency detuning. Both cases are
discussed subsequently. It should be noted that the amplitude response discussed in
the following subsection constitutes an exception in this chapter in which all other
discussed responsivities are based on a change in frequency.

3.2.1 Amplitude Response to a Force

A force F() acting on a micro- or nanomechanical resonator, as described by the
equation of motion of a damped and driven linear resonator (1.113), directly results
in an amplitude response, as discussed in the Sect. 1.2.1. The amplitude response of
a lumped-element model resonator is given by (1.124)

= L 330
= V(22— 02)? + 4§2_sz2F(t)' (3.30)

The force sensitivity is now given by
AFuin = #~" Aziin 3.31)
with the amplitude sensitivity of the readout Az, and the amplitude responsivity

0z 1/m

A=, = .
IF  [(22 — w?)? + 48202202

(3.32)

The readout sensitivity Azmin is discussed in detail in Chap. 5 on page 149.
There are two special situations to be discussed, namely the quasistatic and
resonant operation.
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3.2.1.1 Quasi-Static Force Sensing (0 < 2)

In the quasi-static case, the force to be measured has frequency components which
are smaller than the eigenfrequency frequency of the resonator (v < £2). In this
case the amplitude responsivity reduces to the static response

A = = ., 3.33
22m  k ( )

where k is the spring constant of the nanomechanical resonator.

3.2.1.2 Resonant Force Sensing (v = 2)

In the resonant case, the force to be measured has a frequency which matches the
eigenfrequency of the resonator (w = §2). In this case the amplitude response
reduces to the resonant response

Q Q
X = = 3.34
2?m  k (3-34)
is equal to the static response multiplied by the quality factor Q. Apparently, the
mechanical quality factor amplifies the force responsivity.

3.2.2 Frequency Response to a Force Gradient

The detection of a force gradient is best known from dynamic atomic force
microscopy, where the cantilever-tip interaction with the substrate produces a shift
of the cantilever resonance frequency [8]. Assuming a small mechanical vibration z
around the equilibrium position of the resonator at zy, the force to be measured can
be approximated by a first order Taylor series

dF (z0) .

F(z0 + 2) =~ F(z0) +
0z

(3.35)

Apparently, if the force has a non-zero gradient component dF(z0)/9z = F’(zo),
then the equation of motion of a lumped-element resonator (1.113) becomes

mz + ¢z +kz = F(z0) + F'(z0) z
(3.36)
mi+cz+ (k—F'(z0))z = 0.

The force gradient is altering the effective spring constant of the mechanical
resonator. On the right side of the equation remains a static force F(zo). This force
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pushes the mechanical resonator into a new equilibrium point. Assuming that this
force is small, the induced static deflection is negligible for a linear system. The
eigenfrequency of the system can then be obtained from the homogenous differential
equation (3.36), which readily results in (see Sect.1.2.1.1 on page 30 for more
detail)

Q= \/k_ Fo) _ o \/1 _F&) (3.37)

m k

Assuming that F’(z9)/k < 1, the eigenfrequency can be approximated by the first
order Taylor series

F'(20)
2~ 82 (1- 3.38
0 ( ok ) (3.38)
which gives the frequency responsivity
052 1
R = =— £ 3.39
ke 2% " 39
and the relative frequency responsivity
1
O = — . (3.40)
2k

It is noteworthy that the relative frequency responsivity (3.40) is very similar to
the amplitude responsivity (3.33). The general rule to obtain a large force or force
gradient responsivity is to design a soft nanomechanical resonator with a low spring
constant k.

3.2.2.1 Frequency Response to an Electrostatic Potential

Electrostatic forces are a common transduction mechanism to actuate micro and
nanomechanical resonators, as it is discussed in more detail in Sect.4.2.1.1 on
page 121. It is possible to tune the resonance frequency by applying a d.c. bias
voltage tuning [9, 10]. The same effect can also be used to measure the electrostatic
force strength as a function of the applied bias potential [11]. In this subsection, the
frequency response of a membrane resonator to a d.c. bias voltage is derived and
compared to the response of a lumped-element model resonator (3.38), as derived
previously.

Neglecting any electrostatic fringe fields, the electrostatic force between two
parallel plates under a potential difference %, of area A, and separated by a distance
& is given by
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Fig. 3.7 Schematic drawing
of a flexural resonator placed
in a distance d above a
conducting plate. There is an
electrostatic potential %/
applied between the resonator
and the plate

F(§) = —goe,A ;2&2/2, (3.41)

with the permittivity of vacuum ¢ and the relative permittivity of the surrounding
medium &,.

A schematic of the membrane resonator is shown in Fig. 3.7. The equilibrium of
forces for an infinitesimal piece of membrane with the area dx x dy and thickness A
is then given by

82
oh a; (. v, 1) — ohV2u(x, v, 1) = F(d + u) (3.42)

with the displacement function u(x,y,t), the tensile pre-stress o, and the mass
density p. The deflection of a membrane can be described by (1.83)

u(x,y, 1) = D) Unjdnjlx,y) & (3.43)

n=1 j=1
with the normalized mode shape function

buiGey) =sin o sin”Y (3.44)

L L

Considering the first order Taylor approximation of the electrostatic force (3.41),
the equation of motion can be written as

52 OF (d
oh a: — 0hV2u = F(d) + a( )
u
9 ] 2¢08,
ph'y o — oV = =" 0 (3.45)

In a “linear system,” the static force term 5‘§{A U? causes a static deflection of the
membrane. This static deflection does not influence the eigenfrequency and can
thus be neglected. Following Galerkin’s method, as introduced in Sect. 1.2.1.5 on
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page 39, (3.42) can be solved for the fundamental normal mode by multiplying
it with ¢;; and integrating over the entire membrane area A = L x L with
L = L, = L,. Taking the scalar product of the fundamental mode gives

208,
/f (pha)zu + ohVu + Zf %Zu) $1.1dxdy =0 (3.46)
A

which with (3.43) can be written as

2 2808,
phe’ // gridedy =2, 0h//¢>12!1dxdy+ ;3 62/2//¢12,1dxdy: 0
A A A

2
s AT 2808r 5
phw —2L20h+ e v~ =0.
(3.47)
The eigenfrequency can now readily be isolated from (3.47)
1 208,
Q2 = =2x2" =g (3.48)

With the eigenfrequency of a membrane with zero voltage applied £2, | (% =0)=4£2

Q0 = */Z” \/ o (3.49)
0

the first order Taylor approximation of £2 becomes

E0Er 2
2~ (1— wU*). 3.50
’ ( d>hp$2; ) G0

From (3.50) it can be seen that an applied bias voltage % causes a negative
frequency detuning.

3.3 Frequency Response to Ambient Temperature
and Local Heating

As the quality factor of micro- and nanomechanical resonators is a function of
temperature, as introduced in Sect. 2.3.1 on page 69, so is the resonance frequency.
The temperature responsivity of the resonance frequency is caused by two main
effects: (1) the Young’s modulus is a function of temperature E(T), typically a
material softens with increasing temperature, and (2) a temperature change AT
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induces a strain from the thermal expansion of the material ¢ = o AT. Depending
on the configuration, a thermal expansion results in a change of geometry or stress.

For most applications a high frequency stability is required and hence resonators
with a small temperature response are sought after. A high temperature responsivity
can impede a particular application if a small ambient temperature change, e.g.,
significantly changes the frequency of a filter or produces a fake sensor signal.
Typically, sensors are temperature stabilized either by (1) using a temperature
insensitive resonator design, (2) performing a differential measurement between two
resonators that both are exposed to the same temperature bath but only one of them
is sensing, (3) the measurement signal is temperature corrected by means of an
integrated temperature sensor, or (4) the ambient temperature directly is controlled
and stabilized. Besides a change in ambient temperature, a significant local heating
can also be introduced by the electric or optic transduction of the nanomechanical
resonator.

In contrast to the sensor applications mentioned above, a high as possible
temperature responsivity is the figure of merit if the resonator is actually used
to detect temperature changes. This is the case if micro- and nanomechanical
resonators are used as thermometer [12, 13] or to measure the absorption of
electromagnetic waves for the application as a bolometer [14] or photothermal
absorption spectrometer [15-18]. Another scenario in which a high temperature
response is wanted is for thermal frequency tuning [19].

In all cases and for all applications, the understanding of the temperature
response of different resonators is crucial. Here, the temperature sensitivity of a few
specific structures, such as beams and strings, as they readily allow for the derivation
of simple analytical solutions. The temperature response of plates and membranes
is more challenging and is best obtained by performing FEM simulations.

3.3.1 Stress Released Resonators

Stress released structures, such as singly clamped beams (cantilevers), as introduced
in Sect. 1.1.1, are among the least temperature sensitive resonators. In the first order
of approximation, for any cantilever the temperature induced strain can relax, which
only results in a slight change of geometry. In this case, it is possible to calculate
the eigenfrequency (1.27) after the thermal expansion of the material after a change
of temperature AT =T — Ty

. E(T)L,(1 + aAT)*
QH(T) - An \/,0(1 + O{AT)_SA(l + ()[AT)ZL4(1 =+ O{AT)4

=22 \/ling V(1 + aAT) (3.51)
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with the temperature sensitive Young’s modulus with an assumed linear thermal
softening coefficient ag

E(T) = Eo(1 + agAT). (3.52)
The temperature responsivity is then given by

_wem - jetarg o (3.53)

%
o |y, 2

and the relative responsivity is

s =41 (3.54)
2

Both effects are equally weighted and act on the eigenfrequency proportional to
the square root of the specific thermal coefficient. However, as said coefficients
are very small, the Taylor expansion can be truncated at the first order obtaining
Eq. (3.54). Typically, the temperature induced change in the Young’s modulus is
dominating over the geometrical effect from the thermal expansion. For example
for silicon, the thermal expansion coefficient is « = 2.6 ppm/K and the thermal
softening coefficient is ag ~ —44 ppm/K[20]. Hence, the temperature effect on
the Young’s modulus is roughly one order of magnitude larger than the effect of
thermal expansion. The same is true, e.g., for silicon nitride with ¢ = 2.3 ppm/K
and ag ~ —87 ppm/K[21]. The two mechanisms involved are acting in the opposite
way. On the one hand, the thermal expansion is causing a frequency increase
with increasing temperature, while on the other hand the softening of the Young’s
modulus is lowering the frequency with increasing temperature.

The analysis, as it is here performed for cantilevers, holds true for all stress
released structures as, e.g., one-dimensional bulk vibrations (Sect. 1.1.2), torsional
beams vibrations (Sect. 1.1.4), or bending plate vibrations (Sect. 1.1.3).

In some cases, however, it is necessary to look into more detail due to the fact
that the stress is never completely released at the clamping. This indeed gives raise
to a dependence of the frequency on the stress that might be dominant over the
previously analyzed dependencies. In addition, often micro- and nanomechanical
structures aren’t uniform, but are made from multiple layers of materials with
different thermal expansion coefficients. A common design consists, e.g., of a
dielectric structural materials, such as SiN or SiC, that is coated with a thin metal
layer. In this case, the modelling of the temperature response becomes more difficult,
as a temperature change causes a complex stress field and resulting deformation
with a hard to predict influence on the eigenfrequency. This effect has, e.g., been
observed in 50 nm thick silicon nitride cantilevers coated with a 20 nm thick gold
layer. The local heating with a readout laser resulted in a substantial detuning of the
resonance frequency [22].
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Finally, in the case of doubly clamped beams (bridges), the analysis also holds
true for temperature changes that cause only a small stress, where small here is
defined as

o < B (o)

ALz~ 12 \L
Ln*n?  @2n? [(1)\2
AT < foLZ ~ ”12’; (L) (3.55)

as can be extracted from (1.48), and by assuming a linear elastic material with a
linear thermal expansion 0 = EaAT. As an example, this gives for a silicon bridge
with a ratio of length to height of L/h = 100 a pretty robust temperature range of
roughly AT < 50 K. But as soon as the length to height ratio becomes larger the
temperature induced stress starts to significantly contribute to the eigenfrequency
of the resonator, and hence a small temperature change results in a large change
of the frequency. Strings and membranes are the extreme cases where the tensile
stress is the dominating parameter that defines the eigenfrequency. Hence, strings
and membranes are highly responsive to changes of stress and hence to changes of
temperature. This case will be discussed in more detail in the following subsection.

3.3.2 Resonators Under Tensile Stress (Strings)

Strings show a particularly strong response to temperature change. The thermal
expansion is directly changing the tensile stress, which is the core parameter
defining the string’s resonance frequency. Here two main scenarios are introduced:
(1) the string plus its frame is exposed to a common ambient temperature bath, and
(2) the center of the string is heated locally. The first scenario is important when
string resonators are used in arbitrary applications that require a good frequency
stability, or when the string is employed as ambient temperature sensor. The second
scenario plays an important role in many experiments where the string vibration
is detected optically, e.g. with an integrated optical ring resonator or a free space
laser, as depicted in the schematic in Fig. 3.8. The former configuration is often
used in optomechanics [23-25]. Here fluctuations in the laser power could result in
frequency noise of the mechanical resonator.

3.3.2.1 Ambient Temperature

The eigenfrequency of a string is given by (1.52) and it is mainly defined by
the pre-stress o. Different thermal expansion of the beam and the supporting
chip make the strain of the beam temperature dependent which will result in a
temperature dependent tensile stress. A schematic of such a string is shown in
Fig.3.9. The eigenfrequency will therefore also be a function of temperature. If the
beam and the frame expands linearly with temperature the temperature dependent
strain is given as
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String resonator

PN

Free space
laser

@

Fig. 3.8 Schematic of two common optical coupling mechanisms with string resonators, both
producing a “point”-heating at due to optical absorption in the string center

Fig. 3.9 Schematic drawing of a string with length L and a thermal expansion coefficient oy
spanned by a frame with a thermal expansion coefficient oy,

&e(T) = &0 — (s — ) (T — To), (3.56)

where g is the strain at temperature 7}, 7' the temperature and ¢; the coefficient of
thermal expansion of the beam and the support. Stress and strain are related to each
other via Hook’s laws if the beam is made of a linear elastic material and the strain
does not exceed the elastic limits. If this is true, the temperature dependent stress
can be defined as
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o(T) = Ee(T)
U(T) = E(SO - (astr - O{fr)(T - TO))
o(T) = 00 — E(otge — a:) (T — Tp). (3.57)

Inserting the temperature dependent stress into (1.52), the temperature dependent
eigenfrequency is given by

Q,(T) = niw \/00 — Eo(oger — o) (T — To)7 (3.58)

L P

which for a small stress change, that is for a small AT, can be approximated by the
first order Taylor approximation

(3.59)

£2,(T) ~ $2,(T)) (1 _ ;EO(O(str — o) (T — TO)) .

0o

In this approximation temperature induced changes in length, Young’s modulus,
coefficients of thermal expansion and density have been neglected. For a real beam
it can be expected that the length and the coefficients of thermal expansion will
be increasing with temperature and that Young’s modulus and the density will be
decreasing with temperature. Neglecting these changes will introduce a small error
when estimating the resonance frequency.

The temperature responsivity of a tensile stressed beam can be written as

982, 1 Eo(ocm — C(fr)
— — _ 2,.(T, .

and the relative responsivity

. 1 EO(Olstr - afr)
2 (o)) '

SB = (3.61)

From this expression it can be seen that the temperature responsivity of a string is
increasing with the Young’s modulus and a big difference in thermal expansion
and for a decreasing pre-stress. The responsivity is negative if the string has a
higher coefficient of thermal expansion than the frame and vice versa. Optimizing
all parameters, ©K resolution can be achieved with nanostring resonators [13].

In the case of string made from multiple layers of different materials, the mass
density and the temperature dependent tensile stress can be written in an effective
form, which in the particular case of two materials are [26]

« _ pi+hopo

3.62
hy 4 hy (5.62)
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and

_ o (T) + hyor(T)

o*(T 3.63

() o (3.63
Inserting these effective parameters in the eigenfrequency equation for a
string (3.57) and substituting the individual tensile stresses o; with (3.57) yields

the eigenfrequency of a bi-layer string

£(T) = n | (hi oo — (otsew,1 — i) Er] + o [002 — (g2 — ) Eo]) (T — To)
" 2L hip1 + h2p2 '
(3.64)

The respective responsivity can readily be calculated as done in (3.61).

3.3.2.2 Local Heating at String Center

As mentioned in the introduction to this section, the heating of a string at the center
is a common scenario that occurs when an electromagnetic energy is absorbed, e.g.,
from a readout laser or during a photothermal analysis experiment.

Assuming a stationary situation in which the energy P, absorbed in the string
center, is in equilibrium with the heat flow through the strings out into the frame
of constant temperature 7y. In this case the temperature field in the string can be
readily described by

L
T(x) = To + 2(Ti — To)z for 0<xs< (3.65)
as it is depicted in Fig. 3.10.
P

T
T1
To X

0 L2 L

Fig. 3.10 Temperature distribution in a string of length L with a point heat source of power P in
the center
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The heat flux Q7 through one half of the string (from the string center to the left
string end at x = 0) with a cross section A is described by the one-dimensional
Fourier’s law

T
Or = —KA (3.66)

with the thermal conductivity « of the string. The total energy Q flowing from the
string center to the frame must be equal to the total power P that is absorbed in
the string center P = 2Q7. With (3.65), (3.66) yields the resulting temperature in
the string center coming from the absorbed power

1 L
AT =T, —-Ty = P. 3.67
—To=, 4 (3.67)
Knowing the power-dependent temperature field in the string, it is now possible
to calculate the temperature induced change of tensile stress. For the given linear
temperature field, the average stress change (Ao) in the string is given by

(Ao) = aE (AT), (3.68)
where the average temperature change for the linear temperature field is given by
(AT) = | AT.

For a small stress change, using the first order Taylor approximation, the
eigenfrequency of a string (1.52) can be approximated by

2,(P) ~ 2,(0) (1 1 M“))
2 o

L wEL (3.69)
o
=2, 1-
© ( 16 ko A )
which results in the responsivity [17, 18]
0§2,(P) 1 «E L
% = = — Qn 0 3.70
P 16 ko A © (3.70)
and the relative responsivity
1 aE L
8K = — . 3.71
16 ko A @71

This formula shows that the responsivity of an absorbed power in the string center is
maximal for long and narrow strings with a low tensile stress. Also, a large thermal
expansion coefficient and a small thermal conductivity increase the response,
which is very intuitive. However, the optimal design is not straightforward, as
demonstrated in the case of a SiN string coated with a gold layer with the goal
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to increase the responsivity. On the one hand, gold has a large thermal conductivity,
which deteriorates the responsivity. But on the other hand, gold has a larger thermal
expansion coefficient than SiN which increases the responsivity. It has been shown
that the optimal solution is to remove the gold close to the string ends [17]. In this
way the gold layer increases the thermal expansion but the heat flow off the string
is minimized.
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Chapter 4
Transduction

Abstract The efficient transduction of nanomechanical resonators is quintessential
for any practical application. In the context of this book, transduction refers to
the translation of mechanical motion to an electrical signal and vice versa for
detection and actuation, respectively. In this chapter the most common underlying
physical transducing mechanisms are quickly introduced. Most of these mechanisms
are of an electrical nature, such as electrodynamic, electrostatic, thermoelastic,
piezoresistive, or piezoelectric transduction. Nanomechanical resonators transduced
with one of these techniques are therefore known as nanoelectromechanical systems
(NEMS). But it is also common practice to transduce nanomechanical resonators by
optic means. The full optic transduction and control of nanomechanical resonators
is, e.g., employed in the field of cavity optomechanics.

This is an overview of techniques commonly used to transduce (actuate and detect)
the mechanical motion of nanomechanical resonators. Every technique is briefly
explained and prominent corresponding examples are presented. The reference list is
not complete by any means. The idea of this overview is to call the reader’s attention
to all possible transduction techniques and give him/her an entry point for his/her
own thorough literature research.

There are a few techniques that are less common, which in this edition will not be
omitted. This, e.g., includes the detection of motion of nanomechanical resonators
by tunneling [1], hard contact [2], or field emission [3]. Another technique which
will not be discussed in more detail is magnetostatic transduction. This includes the
transduction of ferromagnetic [4] or paramagnetic [5] mechanical resonators with
the help of an external dynamic magnetic field. The increasing inductive reactance
of a coil with increasing frequency sets a limit at room temperature of the maximal
achievable frequency in the lower kHz range. Hence this technique is rarely used to
transduce nanomechanical resonators with frequencies in the MHz range.

The focus of this book is NEMS that is nanomechanical resonators that are
transduced by electrical means. Besides electrical transduction, optical detection
of nanomechanical motion is commonly used, which can be external or fully
integrated. Like many electrical transduction techniques, optical transduction can
be used not only to detect but also to actuate a nanomechanical resonator by means
of radiation pressure. The full optical transduction and control of nanomechanical

© Springer International Publishing Switzerland 2016 115
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resonators is studied in cavity optomechanics [6, 7]. Cavity optomechanics has
developed into a field and its specific transduction methods are not covered in this
chapter.

Some transduction techniques allow for both actuation and detection whereas
others only work for either detection or actuation. The nature of each technique is
assigned in the parentheses behind the title.

4.1 Electrodynamic (Actuation and Detection)

Electrodynamic transduction is based on the Lorentz force acting on free charges
inside a wire that is located in a uniform magnetic field B. The Lorentz force F
acting on a single particle with charge ¢ in the absence of an electric field is then
given by

FL =gvxB “.1)

with the velocity vector v. From the vector product it is clear that the resulting force
is acting in the direction normal to the plane spanned by the magnetic field and
velocity vector. The effect of the Lorentz force can be used to actuate and detect the
motion of a nanomechanical resonator, as discussed subsequently.

Electrodynamic transduction is relatively easy to implement and allows for an
efficient actuation and detection of nanomechanical resonators with frequencies up
to the GHz range. It is thus not surprising that electrodynamic transduction had been
an enabling technique for the pioneering examples of nanomechanical resonators [8]
(see Fig.4.1).

Fig. 4.1 SEM micrograph of
a nanomechanical silicon
resonators fully transduced
electrodynamically
(Reprinted from [8] with the
permission of AIP
Publishing.)
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4.1.1 Lorentz Force on a Straight Wire

A conductive wire carrying an electric current experiences the Lorentz force when
it is located inside a uniform magnetic field B. Individual electric charges that are
traveling with a velocity v inside the wire each experience the Lorentz force (4.1).
The sum of all the forces acting on all individual charges creates a macroscopic
force on the wire. The electric current inside a wire of length L is defined by

4.2)

with the total number of charges n. Combining this definition with the Lorentz force
law (4.1) yields a term for the total magnetic force acting on the wire as a function
of the electric current

F =LI xB. (4.3)
The most common ways to implement a Lorentz force actuation creating an out-
of-plane vibration in singly clamped and doubly clamped nanomechanical beam

resonators are shown in Fig.4.2b. As it is clear from (4.3), the Lorentz force is
increasing linearly with the magnetic field strength. At room temperature a strong

Electric current: |

Lorentz force: F

Lorentz force: F

Electric current: |

Fig. 4.2 Schematic drawings of two common electrode configuration to actuate (a) singly
clamped and (b) doubly clamped beams
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Fig. 4.3 Frequency response of a gold-coated silicon nitride micro string (340 nm thick and
1000 pm long) placed in a magnetic Halbach array with a field strength of 0.4 T and actuated with
an ac voltage of 30 mV. The resonance was detected with a laser-Doppler vibrometer (MSA-500
from Polytec GmbH) at atmospheric pressure

magnetic field can be achieved with rare earth magnets. When arranging them in a
Halbach array magnetic field strengths of up to 2 T can be achieved [9]. At cryogenic
temperatures, magnetic fields of up to 7-8 T can be achieved with superconducting
coils [8, 10].

Attention has to be paid to the fact that only odd resonant bending modes can be
transduced with this technique. In even modes, the induces net force is zero. This
effect can be seen in the frequency response of a resonant strings actuated by the
Lorentz force shown in Fig. 4.3.

4.1.2 Electrodynamically Induced Voltage (Electromotive
Force)

When a wire is moving inside a uniform magnetic field, the individual free
charges in the wire experience the Lorentz force (4.1). In the case of the depicted
transduction schemes in Fig. 4.2, the magnetic forces are pushing the charges in the
direction of the wire. This magnetic force acting on the charges results in a charge
separation and hence a potential difference across the length of the wire. In the
case of a moving conducting wire this voltage is called the motional electromotive
force (Ugmr). This induced voltage is the underlying principle of typical electric
generators.
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Fig. 4.4 Schematic of simple electrodynamic transduction including actuation by the Lorentz
force detection of electromotive current

The potential difference, or voltage, between two points is defined as the work
done per unit charge to move the charge from one point to the other. Hence, with
the Lorentz force (4.1) acting on a single charge, the EMF between the ends of the
wire is given by

LF;
Uemr = = BLv. 4.4)
q

The detection of this EMF is straightforward and it can directly be picked up, e.g.,
with a network analyzer [8, 9], as schematically depicted in Fig. 4.4. More complex
detection schemes consist of differential setup with a passive reference device for
the use in a self-sustaining oscillator circuit [10].

4.2 Electrostatic (Actuation and Detection)

Electrostatic transduction allows for a low-power operation and uncomplicated
system integration. Therefore capacitive transduction schemes have become a
cornerstone in MicroElectroMechanical Systems (MEMS), where they are very
successfully used in devices such as accelerometers, gyroscopes, microphones,
pressure sensors, and mirror arrays for projectors, etc. The low power consumption
is equally interesting for the use in smaller nanomechanical resonators. However,
the smaller size of the moving parts in nano-sized resonators results in smaller
electrostatic signals. In this subsection electrostatic transduction techniques are
discussed for the application in nanomechanical resonators.

Generally, electrostatic transduction is based on the interaction between quasi-
static electric charges. Practically, the electric charge in a nanomechanical resonator
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is controlled via conductive electrodes with a defined potential. This scheme
of inducing charges by means of a defined potential is the main scope of this
subsection. In contrast, electric charges can also locally be trapped, typically at
the interface of different materials, in particular on dielectrics. It has, e.g., been
shown that local charge separation, resulting in a static dipole moment, can be
used to transduce nanomechanical resonators made of GaAs/AlGaAs multilayers
[11]. While local charges can be a key part of a transducer design, e.g. in
electret microphones, locally trapped charges can hinder an effective electrostatic
transduction [12].

4.2.1 Electrostatic Forces

In a lossless system, the force in direction of a specific degree of freedom £ is given
by the change of potential energy W, of the system in the &-direction

LaW(®)
9

The energy W, stored in an electrostatic system can be derived by integration of the
energy density over the significant system volume v

F= 4.5)

1
W, = / 28,80E2dv, (4.6)

where E is the electrostatic field strength, ¢, is the relative dielectric constant, and
go is the permittivity of vacuum. In an electrostatic system with a single electrical
terminal pair with a constant potential U, the capacity of the system to store
electrostatic energy as a function of the applied potential is typically given as a
function of the systems capacitance C, given by

1 2
W, =—_CU. 4.7)
2

Assuming that the system has a single degree of freedom £, the electrostatic force
in £-direction is then, according to (4.5), given by the change of the capacitance in
this direction

_ 190

F=, ¢

U>. (4.8)

This electrostatic force can be used to drive a nanomechanical resonator. There
are two main system configurations, which are discussed subsequently. The first
subsection discusses the scenario where the change in capacitance in (4.8) is induced
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by the movement of an electrode in the nanoelectromechanial system. The second
subsection focuses on the scenario where the system energy (4.6) is altered by the
movement of a dielectric material inside the nanoelectromechanical system.

4.2.1.1 Forces Between Electrodes

Electrode pairs with a potential difference U feel the Coulomb force from the net
charge difference. This electrostatic force can be exploited to actuate nanomechan-
ical resonators. One way to do so is to use the mechanical resonator as one of
the electrodes. That directly implies that the nanomechanical resonator has to be
conductive. Either the resonator is made of a conductive material, as, e.g., a carbon
nanotube, graphene [14], or aluminium [13, 15, 16]. In case that the mechanical
structure is non-conductive, it has to be metallized. Such a examples are shown in
Fig.4.11 of a silicon nitride membrane resonator that is coated with an aluminium
thin film or graphene.

Depending on the geometry and arrangement of a specific electrostatic resonator
design the appropriate force model has to be used. Here three common models for
specific boundary conditions are presented, as schematically depicted in Fig.4.5.

Normal Force Between Parallel Plates

The probably most commonly found electrode configuration is where a nanome-
chanical resonator is arranged in parallel to a surface with a potential difference U
in between them. A schematic drawing is shown in Fig. 4.5a. Neglecting fringe fields
at the plates’ border, the capacitance between two parallel plates of area A = wL
and situated in a medium with ¢, is given by

Fig. 4.5 Schematics of three electrode arrangements: (a) parallel plates with potential difference
U, (b) wire and parallel surface with potential difference U, and (c) floating potential plate parallel
to coplanar electrode pair with potential difference U
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A
C= £0£,d 4.9)
which with (4.8) yields the force
F Leve, A 02 (4.10)
= — &, . .
27 2

Normal Force Between a Wire Parallel to Substrate

In this scenario, as schematically depicted in Fig. 4.5b, a thin wire with diameter w
is placed in a distance d > w from a parallel substrate (measured from the center of
the wire). Such a situation is typically given for very thin resonators such as carbon
nanotubes. In that case the capacitance can be approximated by

2mepe, L
= 4.11
In(47) i
which with (4.8) yields the electrostatic force normal to the wire’s plane
L
_ _ Tt U2 (4.12)
dln(47)

In the case of a beam which neither fulfills the non-fringe assumption of
the parallel plate model nor the fringe-only assumption of the wire model, the
capacitance and the resulting force can be readily approximated by a combination
of the two models [17]. For this purpose, the wire diameter is chosen equal to the
beam’s thickness w = h.

Normal Force Between a Coplanar Electrode Pair and a Floating Electrode

In this configuration, as shown in Fig. 1.10a, a floating electrode of area A is placed
in parallel over a coplanar electrode pair with a potential difference U. A schematic
drawing is shown in Fig. 4.5c. An equivalent parallel plate capacitor would be half
the area with double the distance d, which by neglecting fringe fields results in the
capacitance [12]

1 A
C= . 4.13
R (4.13)

which with (4.8) yields the electrostatic force normal to the plate’s plane

1 A
F = —gf06r U>. (4.14)
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b

Membrane chip
on electrodes

Fig. 4.6 Examples of applications of dielectric polarization forces for transduction of (a) a
micromechanical polymeric resonators (Reprinted from [20], with the permission from AIP
Publishing), and (b) a silicon nitride membrane resonator (schematic drawing) (Reprinted from
[12], with permission from AIP Publishing.)

4.2.1.2 Dielectric Polarization Force

Dielectric polarization force or Kelvin polarization force [18] is the force that is
being exerted on a dielectric object located in a nonuniform electric field. A well-
known example is the pulling of a dielectric slab into a parallel capacitor by
the electric fringe field at the edge of the capacitor, an effect often discussed in
standard physics books. The main advantage of the dielectric polarization force
over the conventional electrostatic force between electrodes, as discussed in the
previous subsection, is the possibility to work with pristine dielectric mechanical
structures. The lack of metallization is interesting from many standpoints, as, e.g.,
minimal mechanical and optical losses. Figure 4.6 shows examples of applications
of dielectric polarization forces for the transduction of nanomechanical resonators.
Dielectric polarization forces have further been used to transduce silica microtoroids
[19] or nanomechanical silicon nitride resonators [21].

The dielectric polarization force acting on a dielectric object can readily be
calculated by means of the framework introduced in the beginning of this Sect. 4.2.1
on page 120. Beside the energy approach, it is possible to derive a force term based
on a dipole approximation. For this it is assumed that a dipole, that is located in an
electric field E, does not alter the field. The force acting on a single infinitesimally
small dipole is then given by [22]

F=p-VE, (.15)



124 4 Transduction

where p is the dipole moment. A dielectric material can be modelled as consisting
of an infinity of single noninteracting dipoles, which results in a material dependent
macroscopic polarization P. Replacing the single dipole moment with the macro-
scopic polarization in (4.15) then yields the dielectric polarization force density
[18] of a dielectric material

fopr = P - VE. (4.16)
With the polarization of a linear dielectric material with a susceptibility y,
P=c¢yy.E=c¢0(e, — 1)E 4.17)

the dielectric polarization force density, after some vector algebra, becomes [18]
1
forr =, £0(e; = DV(E-E). (4.18)

Because the force density is proportional to the gradient of the electric field is
squared, the resulting net force always acts towards the electric field intensity
maximum.

Coplanar Electrode Design

A typical resonator design based on the dielectric polarization force is based on
a coplanar electrode configuration with the dielectric resonator placed on top,
as can be seen in the examples in Fig.4.6a, b. A schematic of this coplanar
electrode configuration is schematically depicted in Fig.4.7. For a relatively small
gap between the electrodes and a homogeneous dielectric medium, the electric field
lines are concentric circles, given by

U
Ep = . (4.19)
/x4 )2
Fig. 4.7 Schematic drawing
. w
of a coplanar electrode /
arrangement. The resulting L
nonuniform electric field
exerts a dielectric polarization &r

force on a dielectric beam in
the direction of the field

intensity maximum which is hT
toward the electrode gap m L

L
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However, in the here discussed scheme, the concentric field lines get altered
by the presence of the nanomechanical dielectric beam. In order to take this field
disturbance into account the factor « is introduced. The electric field inside the
dielectric beam then is given by

Ed = OlE(), (420)

where o represents the field reduction and field imperfection inside the dielectric
material. With (4.18), the Kelvin polarization force density inside the dielectric
beam (with ¢,) in the normal direction to the electrodes becomes

OE?
dy

a’U?%
722 4 y2)2

1
Jopr = 280(8r -1)
“21)

= _SO(Sr - 1)

Assuming that the beam is situated in a medium such as vacuum or air with a relative
dielectric constant close to unity, the force acting on the dielectric beam is readily
obtained by integration of the force density over the volume of the dielectric beam

d+h pw/2
Fppr = L/ Jopr dxdy
d —w/2
J ' @+ h ' (4.22)
1 arctan , = — (d + h) arctan )’
_ 50(8r _ I)OZZUZL 2(d+h) 2d
2 d(d + h)
Assuming the beam width to be large compared to its height (w > h) and its
distance to the electrodes (w > d), the force simplifies to

1 h
Fopr ~ — . — Da’L U>. 4.23
DPF 27 go(e o d(d + h) ( )

The values for the field correction are typically in the range between
0.6 < a < 1. Numerical « values for dielectric beams with different dielectric
constants &, and heights / can be calculated from the following heuristic formula

8301 40-60156
o= (4.24)
8301106156 4 (g,)P — 1
with
0.003795
b =0.5887 — j03184 (4.25)

which approximates the numerical values with an average relative error of 2.0 %.
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When comparing the dielectric polarization force (4.23) acting on a dielec-
tric beam to the electrostatic force acting on a floating conducting beam in
vacuum (4.14)

Fe_ler" 02
——880 2U

J (4.26)

it shows that the two force terms are very similar, in particular if the beam thickness
is a lot smaller than the distance to the electrodes (7 < d) . The main difference is
that the force on a dielectric beam is proportional to the beam thickness 4 while the
force on a conducting beam is proportional to the beam width w. For a beam with a
height-to-thickness aspect ratio of unity, the forces are of similar order of magnitude.
However the width is typically larger than the thickness, this is particularly true
for membrane or plate structures. In this case it is possible to design an array of
coplanar electrode, which results in an interdigitated electrode design [12]. In such
a design the electrode pitch is typically of the order of the distance d. Hence, for a
wide membrane or plate structure, the force on a dielectric structure is as a rough
approximation a factor 4/d smaller.

4.2.2 Capacitively Induced Current

Besides the actuation of a nanomechanical resonator, the capacitive transduction
technique can also be used to detect the motion of a vibration. The electric charge
Q. stored in the electrostatic system is given by

0. = C(¢)U. 4.27)

If the potential U is kept constant, a change of the capacitance causes a change of
the amount of stored electric charges in the system. In other words, a mechanical
vibration in &-direction, which modulates the capacitance, periodically “pumps”
electric charges on and off the system. This charge migration can be detected as
a small current. According to (4.27), this induced current can readily be increased
by increasing the applied potential U, typically called the bias voltage or Upc.

In a typical nanomechanical system, the mechanically induced variation of
the capacitance AC < Cy is a lot smaller than the total systems capacitance,
also called feedthrough capacitance Cy, which remains constant. The detection of
this small relative variation of the system capacitance is a main challenge of the
capacitive readout scheme of the vibrational motion of a nanomechanical system.
Here, different capacitive readout strategies are discussed briefly.

A common remedy is to perform a differential measurement in which the induced
current from a reference capacitance, that is equal to the feedthrough capacitance
(Cre = Cg), is subtracted from the signal obtained from the nanomechanical
device. Like that the signal from the feedthrough capacitance disappears. A typical
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Fig. 4.8 Equivalent circuit diagram of a differential capacitive readout scheme with a tran-
simpedance amplifier [24]

model.

differential circuit is shown in Fig. 4.8. In this readout circuit, the nanomechanical
resonator is substituted as an electromechanical LCR (inductor-capacitor-resistor)

by [23]

Assuming the bias voltage Upc to be much larger than the AC excitation voltage
Uin, the equivalent impedance of the nanomechanical resonator can be described

. 1
Zpu(s) = Ry + iwLy, +
1w

Cn
and

(4.28)
i $2
Rm — Meft ,
Ui (%) 0
2
v (%)
" Q2%me
L,= ) (4.29)
U3e (%)

with the eigenfrequency £2, effective mass meg, quality factor Q, and the
capacitance change per unit deflection dC/0§ ~ 0Cy /0. As depicted in the
schematic in Fig. 4.8, it is an option to build a differential scheme with a passive
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reference capacitance Cps in parallel to the nanomechanical device. Neglecting
parasitic capacitances C,, the total impedance of the nanomechanical device is
the parallel combination of (4.28) and the feedthrough capacitance Cy plus the
reference capacitance Cr, which then gives the equivalent impedance of

U;
7=
IOu[

1 -1
|:Z +iCUCft—iCUCref:| . (4.30)

When measuring I, directly with a device with an input impedance of Zy =
50 2 device, the transfer function H of the nanoelectromechanical system becomes

Uout _ Zf

H= = .
U; Z

4.31)

Example of the transfer function (4.31) for a nanomechanical beam resonator is
shown in Fig. 4.9. In the case of an unbalanced transduction scheme with Cief = 0,
the nanomechanical vibration induces a small resonance peak plus an anti-peak
as a result of the interplay with the feedthrough capacitance Cy. Additionally, the
feedthrough capacitance produces a large background signal which overshadows
the resonance peak. In the case that the feedthrough capacitance is balanced
with an adjusted reference capacitance (Crf = Cy), the background signal from

a -80¢ Crei=0 Upc=1V b -80 Crer=Cqt Upc=1V
-100 ¢ -100
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o
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T
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Fig. 4.9 Example of a transfer function (4.31) with unity amplification (Z; =

Frequency [MHz]

1) of a (a)

unbalanced and (b) balanced capacitive detection circuit. The measured resonance peak comes
from a doubly clamped silicon nitride beam resonator from [13] with d = 130nm, L = 14 pm,
w = 200nm, » = 205nm, Cx = 76aF, dC/d§ = 0.6aF/nm, Q = 1800, measured with
Upc =10V
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the feedthrough capacitance vanishes and only the mechanically induced signal
remains. From Fig. 4.9 the importance of the bias voltage Upc becomes eminent.
It is therefore advisable to maximize the bias voltage without destroying the
nanomechanical device.

From the transfer functions plotted in Fig. 4.9 it can be seen that the obtainable
signals are going to be very small. The detection of this faint capacitive current I,y
is challenging due to impedance mismatches and parasitic capacitances C,, which
were neglected in Fig. 4.9. The root of this challenge lies in the typically ultrahigh
impedance of the nanomechanical resonator (4.28). When I, is measured directly
with typical 50 2 measurement equipment, the corresponding voltage signal gets
divided by the large factor R, /50 (this is the value at the resonance peaks in Fig. 4.9)
and becomes very difficult to detect. When measuring with equipment with high
input impedance the small signal likely gets deteriorated by parasitic capacitances.
There are several strategies on how to overcome the challenge of transducing a high
impedance nanomechanical resonators. Here two particular impedance mismatch
strategies are quickly discussed: the use of a transimpedance amplifier and an
LC filter. Similar impedance mismatch issues are also common particularly in
piezoresistive (see Sect. 4.4) and piezoelectric (see Sect. 4.5) transduction schemes.

Transimpedance Amplifier

A common practice to overcome the impedance mismatch is to integrate a tran-
simpedance amplifier in close proximity (best on chip) to the nanomechanical
resonator (as shown in the schematic in Fig.4.8) in order to save the signal
from draining through the parasitic capacitances [24]. The impedance Z; of the
transimpedance amplifier is given by

Uout _ Rf

Zr = = ’ .
"7 T 1+ 0GR

(4.32)

The induced current /oy can be amplified by choosing a large resistance Ry.

LC Filter

Another way to solve the impedance mismatch issue is to couple the nanomechani-
cal resonator directly to an LC filter/resonator, as schematically depicted in Fig. 4.10
[13]. The equivalent impedance of this LC impedance matching circuit is given by

1 —1
Zicim = [Z + iwCyq + ia)C]_c:| + iwLic + R ¢ (4.33)

m

with the impedances of the LC inductor Z; = sLi ¢ + Ry c. The resonance frequency
of the LC resonator (wc = 1/+/LicCLc) is chosen to match the frequency of the
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Fig. 4.10 Schematic of an LC impedance matching capacitive detection circuit, according to [13]
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Fig. 4.11 Calculated reflection (20 log[(Z.civ — 50)/ (Zr.cm + 50)]) of an LC impedance matched
capacitive readout circuit (4.33). The measured resonance peak comes from a doubly clamped
silicon nitride beam resonator from [13] withd = 130 nm, L = 14 pm, w = 200 nm, 2 = 205 nm,
Cy = 76aF, 0C/0§ = 0.6aF/nm, Q = 1800, measured with Upc = 10V, C.c = 4.2pF,
LLC =33 [LH, RLC =470Q

nanomechanical resonator (w c = wrs). At resonance, the total impedance seen
from the measurement port is approximately given by Zr &~ Lic/(CLcR,) + RLc
[13]. The trick is now to adjust the LC components in such a way to match the
impedance of the measurement equipment, which typically is 50 2. However, this
can be hindered by the unavoidable losses Ry ¢ in the inductor at room temperature.
The effect of the LC filter can be seen in the reflectance plots in Fig.4.11.
Off-resonance, the LC filter reflects all energy. On-resonance however energy is
absorbed and passed on to the nanomechanical resonator whose reflection peak is
visible in the bottom center.

This is a narrow-band technique which requires an adjustment of the LC filter for
a particular nanomechanical system. The advantage however lies in its simplicity,
low temperature applicability, and possibility of multiplexing, that is to transduce
arrays of mechanical resonators via a single channel [13]. The same technique
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of on-resonance coupling of a nanomechanical resonator to an LC resonator has
also been used inversely, that is to use a nanomechanical resonator for signal
detection [15].

4.2.3 Other Capacitive Detection Schemes

Besides the here discussed capacitive detection via the induced current, there exist
other capacitive detection schemes, such as coupling of a nanomechanical resonator
to a single-electron transistor [25, 26] or a microwave cavity [16, 27]. In the former
technique a nanomechanical resonator is vibrating in close proximity to the gate
electrode of a transistor. The resonator is capacitively coupled to the transistor and
its vibration is detected as a modulation of its conductance. In the latter technique,
the displacement of the capacitively coupled nanomechanical resonator changes the
resonance frequency of a superconductive microwave cavity. In this optomechanical
configuration the mechanical resonance peak appears as a frequency modulation
sideband of the cavity.

Carbon nanotube resonators are commonly transduced in semi-capacitive
schemes. In these, the carbon nanotubes are spanned in close proximity over
a conductive substrate which acts as a gate electrode. The vibration of the
semiconductive tubes close to the gate modulates their conductivity. This transistor
technique is a widespread technique for the transduction of semiconducting carbon
nanotubes [28-33].

4.3 Thermoelastic (Actuation)

A nanomechanical resonator can be actuated by local pulsed heating. The local
thermal expansion of the material induces strain fields which can translate into a
mechanical motion. This effect is distinct in multi-material structures with variations
in the thermal expansion coefficient. In particular in bi-layer beams the heating
causes a deflection due to the different thermal expansion of the different layers.
In a doubly clamped beam a pulsed heating causes a modulation of the tensile stress
resulting in a parametric actuation. But even in a homogeneous material a heating
pulse can induce stress gradients which causes a net actuation force. Typically,
the thermoelastic effect is maximal when heating the nanomechanical resonator at
the anchoring [34]. The local heating can be induced by either local photothermal
heating with a pulsed laser or with a resistive heating element, as schematically
depicted in Fig. 4.12.

Optical heating is often combined with an external optical readout and allows a
fully optical transduction of nanomechanical systems [34]. However, it is impor-
tant to distinguish this thermoelastic technique from the optic forces used in
optomechanics. The thermoelastic technique has several drawbacks, such as the net
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Fig. 4.12 Schematic drawing of thermoelastic actuation by local photothermal heating with an
amplitude modulated laser (leff) or with an integrated resistive element which can be heated by
passing an electric current (right)

increase in temperature and the thermal relaxation time which limits the frequency
bandwidth. The thermoelastic actuation with an integrated ohmic element is a
technique that is particularly suitable to be combined with a piezoresistive detection
(as discussed in Sect. 4.4) [35]. An example of such a combined transduction of a
doubly clamped nanomechanical beam is shown in Fig. 4.13.

4.4 Piezoresistive (Detection)

Piezoresistive detection is based on the strain induced change in resistance of a
conductive element, typically called a strain gauge. For small elastic strain the
piezoresistive effect can be assumed to be linear. In this case the gauge factor (GF),
is defined as the relative change of the resistance R per strain &

_ AR1

GF = . 4.34
R ¢ ( )

The resistance of a longitudinal strain gauge of length L and a rectangular cross

section of area A is given by R = pgrL/A, with the resistivity pg. The change in
resistance is given by the sum of the change of each resistance factor

oR R OR
AR = A ALK 4 aa® 435
PRaoe T 2oL T %04 (4.35)

which results in the relative change of resistance

AR ApR+AL AA
R px L A

(4.36)
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Fig. 4.13 (a) Scanning electron micrograph of one a single-crystal silicon carbon resonator
comprising an 80-nm-thick gold thermoelastic bilayer actuator (right inset) and a 30-nm-thick
piezoresistive loop of a gold palladium alloy (left inset). (b) Schematic of the transduction based
on a signal downmixing [36]. DC denotes directional coupler, FD frequency doubler, and HPF
high-pass filter (Reprinted from [35] with permission from AIP Publishing.)

Substituting the relative changes of geometry with AL/L = ¢L and AA/A ~ —2ve
results in the longitudinal gauge factor according to (4.34) of [37, 38]

Apr
PR

1
GF = + (1 +2v). 4.37)
&

From the gauge factor in this form two effects contributing to the total piezoresistive
behavior in a material can be summed up.

The first term in (4.37) is the strain coefficient of resistivity, which comes from
the dilation of the material. The resulting change of the inter-atomic distance can
alter a material’s conductivity mechanism. The second term in (4.37) is a purely
geometric effect coming from the elongation and thinning of the material under
physical strain.

In bulk metals, typical values for the strain coefficient of resistivity A’;R i range
from 0.5 to 3 [39]. The geometric gauge effect typically results in values between
1.6 and 1.9. Combined, this results in typical gauge factors of bulk metals between
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2 < GF < 5. There are some exceptions, such as nickel for which large negative
gauge factor have been measured (GF = —12) [39]. However, the gauge factor of
metals is a function of sheet resistivity which can be controlled by the thickness of
a metal thin film [37, 40]. It has been observed that initially GF of metal thin films
decreases from the initial bulk value when thinned. A minimum of GF occurs in
most metals at a sheet resistance around 10°Q where the gauge factor values are
significantly below the bulk values. However, above this sheet resistance the gauge
factor has shown to increase steeply for very thin films (<1 nm) with maximal values
measured, e.g., for gold of GF = 97 [37].

In semiconductors the strain coefficient of resistivity is particularly distinct and
the geometric gauge effect is secondary. Here strain alters the bandgap, which
changes the energy barrier an electron has to overcome to raise to the conduction
band. Semiconductors, such as silicon, have gauge factors roughly ranging from
GF ~ =£30 for polysilicon [41] to GF ~ =110 for single-crystal silicon [42]
depending on the doping level, doping type, temperature, and crystal orientation
[38]. As in metals, in semiconductors the piezoresistivity is a function of the
thickness of the strain gauge. As an example, exceptionally large gauge factors
of several thousand have been observed with single-crystal silicon nanowires [43].
Piezoresistive detection is applicable for static as well as dynamic measurements.
Typically, a reference and a measuring resonator are connected with two external
resistors to form a Wheatstone bridge configuration [44, 45]. In this way an output
signal is only recorded when there is a difference in the deflection between the two
resonators. Another readout technique is based on signal downmixing [35, 36], as
shown in the example in Fig. 4.13.

Instead of striving for maximizing the gauge factor, it has been shown that
low-resistance gold metal strain gauges can have significant advantages over high-
resistance silicon strain gauges for the transduction of nanomechanical resonators
(see Fig.4.14) [35, 46]. Even though the gauge factor of gold is relatively low com-
pared to silicon, the final frequency resolution is high because of the low electrical
noise introduced by the low-resistance gold film. Furthermore, the integrated gold
electrode allows a perfect impedance matching with standard electronic equipment
with resistances of 50 2. This allows the direct pick-up of the piezoresistive signal
without the need for a complex signal detection scheme.

4.5 Piezoelectric (Actuation and Detection)

Piezoelectricity is a material property that was first discovered by the Curie brothers
circa 1880 [47]. From a physical point of view is the property of a material to
generate charges when it is deformed and viceversa, upon the application of an
electric field, the material deforms. Mathematically, it can be seen as the coupling
between the elastic and electric constitutional equations [48], that can be written
down as
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Fig. 4.14 Example of a piezoresistive detection of nanomechanical resonators with gold strain
gauges. The SiC nanocantilevers were measured at room temperature in vacuum. The data plots
show the fundamental-mode resonance frequencies. The insets show SEM micrographs of the
specific devices [46]

§ij = Cijkl(}kl + glijkEk — & = Cyjo; + d;E;
(4.38)
D;=€; E; +d. i0js

where ¢ and o are strain and stress vectors (1x6 vectors) and their ~ counterparts
are tensors (3x3 matrices), D and E are the displacement and electric field, C is the
compliance matrix (6x6 matrix) and C is the fourth rank compliance tensor, € is
the dielectric permittivity and d is the piezoelectric matrix (3x6 matrix) with d the
piezoelectric third rank tensor. In the absence of the latter, both equations in (4.38)
remain uncoupled, which is the case for non-piezoelectric materials.

Back at the beginning of the twentieth century much work on the piezoelectric
material properties was performed and it ended up with the invention of the piezo-
electric oscillator [49], which ended up (and still is) being a fundamental part of the
technological development of our society. It took many years till microfabrication
processes were able to produce high quality thin layers of piezoelectric materials
[50-53]. It is this that has hampered for decades the miniaturization of piezoelectric
actuation. As it can be inferred from (4.38), transduction efficiency will be strongly
dependent on the magnitude of the piezoelectric tensor, thus the requirement for
good materials. Many materials have been used ZnO [54], PZT [51], GaN [55, 56],
GaAs [57],...but the preferred material due to its compatibility with standard
CMOS post-processing and its overall good material properties has been Aluminum
Nitride. The State of the Art of fabrication for this material shows that it can be
deposited via sputtering and that layers with a good crystal alignment in the c-axis
have been obtained even down to 10 nm thick layers [58—60].

The governing equations for both actuation and detection are (4.38). As in any
problem of structural mechanics, the actual solution of the kinematic equations, the
solution for the deflection/deformation of a structure, will depend on the boundary
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conditions. In the case of this book, it will depend on whether the resonator/mode
to be studied is flexural, torsional, bulk, 1D, 2D, etc. In each one of those cases
the resulting equations will be different. The three more used types of piezoelectric
resonators are: flexural beams and cantilevers [58-62], dilational (thickness) bulk
acoustic wave mode [52, 55, 63] (Fig. 4.16), and lateral contour mode [64—66].

4.5.1 Piezoelectric Actuation

In this case one should look into the first equation in (4.38). This tells us that we
need metal electrodes on top or both sides of the piezoelectric layer in order to
create an electric field when applying a voltage. This electric field will modify
the generalized Hooke’s law [68] and forcing the structure out of the original
equilibrium. For bulk mode resonators, the effect is quite direct and one only needs
to look into d3; and d33 coefficients which will directly give the deformation in
the case of lateral or thickness modes respectively (assuming that the third axis is
defined out of plane and that a symmetry exists where no preferential orientation
can be found within the plane). In the case of flexural modes it is a little bit more
complicated: the piezoelectric layer that is deformed via the application of voltage
must not be centered around the neutral axis of the mechanical structure. Once this
condition holds true, the expansion translates into a finite bending moment that, in
turn, causes deflection. Equation (4.39) shows the formula for the bending moment
of a cantilever (clamped-free) beam of length L and width w (see Fig. 4.15)

d
M) = 3”21’““‘ V), (4.39)

where zofet 1S the distance between the center of the piezoelectric layer to the neutral
axis of the structure, i.e. if zofrer = 0, there is no bending moment and thus no

Fig. 4.15 Cartoon of a multi-layer cantilever beam composed by metal and piezoelectric materi-
als. When a voltage is applied between fop and bottom electrodes an electric field E is generated
within the piezoelectric layer that is turned into expansion d3; E. When said layer is not centered
around the neutral axis of the structure a bending moment M () is created that causes the deflection
of the cantilever. This motion creates an alternating strain and stress field that will give rise to a
displacement field D. Following Maxwell’s equations, an alternating displacement field also creates
a displacement current Jp which will be collected
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deflection. Assuming now that the stiffness of the metal and piezoelectric material
are very similar (this is indeed the case when using Mo and AIN), it is possible to
write the deflection

A d3lZ0ffSCtL2 Vv
un(@) X, > ’ (4.40)
tlotal 1-— (“)) +J “)Q

where the proportionality parameter y’ needs to be calculated for each structure and
mode, following

L M(x)

0 M, Max

Xo =L ¢, (x)dx = L (¢, (Lact) — ¢,,(0)) , (4.41)

where L, is the length of the actuation electrode. In the case of the first mode of a
cantilever with full electrode coverage the coefficient is )(f cant = 5.34.

4.5.2 Piezoelectric Detection

In this case one should look into the second equation in (4.38), which tells us that a
displacement field will be generated even in the absence of electric field or, rather,
that an excess of displacement field will be generated.

As it is very well known from Maxwell’s equations, if a displacement field
changes over time, that induces a displacement current which for the case repre-
sented in Fig.4.15

BD t Ae ec . d WZoffse
In(?) =/ ™ 44 =jo € " Vi 4 joy? N T (), (4.42)
Aee 01 tpzE Cnu L

where the term 2 is a proportionality term that is defined as

Laget

ﬁ=LO ¢ (x)dx = L (¢} (Laer) — ¢,(0)) (4.43)

where Lge is the length of the actuation electrode. Note that in the case the actuation
and detection electrode are the same, then y? = 4.

Combining (4.42) and (4.40) it is possible to reconstruct the full response of the
electromechanical system, as done for the electrostatic detection in Sect.4.2.2 on
page 126
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d%l WLZ(Z)ffSBI 1 Vin , (4'44)
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where Cy is the capacitance associated with the electrode. Equation (4.44) shows
the different components of the equivalent circuit, as the two terms inside the
parenthesis correspond to the feedthrough capacitance and the LCR motional term
in parallel. In this case it is straightforward to calculate

Ip(t) = | joCo + jox?

Co = 12 d3y WLaggge,
ncll t130tal
L= -
m — wr%cmv
L, 1
R, = . (4.45)
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4.6 Optic (Actuation and Detection)

Optical transduction methods can either be fully external (off-chip) or integrated
(on-chip). External techniques such as interferometry, laser-Doppler vibrometry,
optical leverage readout and radiation pressure actuation have the advantage that
no physical connection to the NEMS is required with the exception of the access
for the laser beam. This facilitates quick and simple testing of NEMS prototypes.
In optical waveguide end-coupling, evanescent light coupling and Mach—Zehnder
interferometry the optical transduction is fully integrated on-chip. Beside the
coupling of an external fiber to the chip, integrated techniques need no alignment
of laser beam and nano resonator and compared to the external techniques are not
limited by the diffraction of light.

4.6.1 Optical Forces

Photons bare a momentum p = h/A, with Planck constant 4 and wavelength A,
which can be used to actuate nanomechanical resonators. When a photon is reflected
in normal direction off a flat mirror it transfers the momentum Ap = 24/ to the
mirror called radiation pressure. For a photon in the visible range this results in a
momentum of the order of Ap ~ 1072 kg m/s. The resulting force would be even
too small to actuate a nanomechanical resonator. However the total momentum can
be increased to useful magnitudes by increasing the number of phonons that are
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reflected. This can readily be achieved with a high-Q optical resonator, such as a
high-finesse optical cavity (the finesse describes the number of reflections a photon
undergoes before it escapes the cavity). This interaction of phonons inside an optical
cavity with a nanomechanical resonator is the subject of cavity optomechanics [6, 7].
One of the most important features of cavity optomechanics is the possibility to
use radiation pressure to counteract the Brownian motion of a nanomechanical
resonator by specifically detuning the wavelength of the phonons with respect to
the high-finesse cavity. This technique allows the cooling of a nanomechanical
resonator to the ground state at which it can exhibit quantum mechanical behavior
[69]. Hence, cavity optomechanics is a unique tool to study quantum mechanical
theory on macroscopic test objects. The techniques applied in cavity optomechanics
have also successfully been applied to electrostatic systems (see Sect.4.2.1) in the
so-called microwave cavity optomechanics [16]. An optical force not only acts if a
light beam is reflected off of a reflective nanomechanical structure [70] but also if a
nanomechanical waveguide structure is placed in the vicinity of a nonuniform light
field (dispersive coupling) [71-73].!

Light absorbed by the nanomechanical resonator causes a local photothermal
heating. Such a heating can induce a thermoelastic response which can be used for
actuation. This thermoelastic technique is discussed in Sect. 4.3 on page 131.

4.6.2 Interferometric Detection

Interferometric detection of nanomechanical motion is among the most precise
detection techniques available. The principle lies in the superposition of two optical
waves of the same frequency. A phase difference in one wave, induced by the
interaction with a nanomechanical resonator, causes an interference pattern in the
combined wave. There are several interferometric detection schemes, such as the
Fabry—Pérot cavity, or Mach—Zehnder interferometer Michelson interferometer,
which are commonly used to detect the motion of nanomechanical resonators in
a myriad of different configurations.

A Fabry—Pérot cavity is the most basic interferometer consisting of one semi-
transparent and one reflective plate (see schematic in Fig. 4.16a). In its most simple
form it can be formed between a suspended nanomechanical resonator and the
underlying reflective substrate. The movement of the suspended structure is detected
by shining a coherent light on it and detecting the change in intensity of the
reflected light [74]. This method works well for micro-sized structures. Even though

I'There is an interesting analogy to electrostatic to be made. The optical radiation pressure observed
in optical cavity transduction schemes has an electrostatic analog in the force between two
electrodes or capacitor plates (see Sect.4.2.1.1 on page 121). And the dispersive optical force
experienced by a nanomechanical waveguide in a nonuniform optical field has an analog in the
force acting on a dielectric nanomechanical structure that is placed in a nonuniform electric field
(see Sect.4.2.1.2 on page 123).
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Fig. 4.16 Schematic drawings of the different types of interferometers commonly used for
the detection of nanomechanical motion. (a) Fabry—Pérot interferometer, (b) Mach—Zehnder
interferometer, (¢) Michelson interferometer

Nanomechanical | p——
motion

Fig. 4.17 Scan of the 3rd bending mode of a 200 wm and 103 nm thick silicon nitride micro string
measured with MSA-500 from Polytec GbmH

it is limited by the diffraction of light it has been successfully used to detect the
vibration of nanowires [75]. More advanced Fabry—Pérot cavities with high finesses
are typically used in optomechanics [70, 73, 76].

In a Mach—Zehnder interferometer (see schematic in Fig. 4.16b) the light from
a single source is split into two paths which are recombined afterwards. In one of
the two path branches a phase difference is induced by a nanomechanical resonator,
which after recombination results in an interference [71, 72, 77].

In a Michelson interferometer (see schematic in Fig. 4.16c) the light from a single
source is split and recombined after the probe light beam reflected off a nanome-
chanical resonator and the reference beam reflected off a mirror. Microscope based
interferometers based on a Michelson interferometer are commercially available
with frequency bandwidths up to 1.2 GHz with scanning capability.” Figure 4.17
shows a scan of a transparent silicon nitride micro string measured with an MSA-
400 system from Polytec.

2UHF-120 Ultra High Frequency Vibrometer from Polytec GmbH Waldbronn Germany.
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4.6.3 Beam Deflection Detection

The vibrational motion of nanomechanical resonators can be detected by the
deflection of a probing light beam by the resonator. Two common techniques
are schematically depicted in Fig.4.18 and briefly explained in the following
paragraphs.

4.6.3.1 Optical Leverage

Optical leverage is a commonly used detection technique known from atomic
force microscopy and is often used for static and dynamic detection of micro
cantilevers. A schematic of the technique is depicted in Fig. 4.18a. A laser is focused
on the back of a cantilever. The reflected light is then detected by a position
sensitive photo-detector. However this method is rarely used for nanomechanical
resonator. The method requires a resonator end-point deflection and thus works best
with cantilevers whereas in NEMS doubly clamped beams are prevalent. Another
drawback is the difficult alignment of the laser such that it hits the photo-detector
after having been reflected on the nanomechanical resonator. Furthermore, the
resonator typically requires a reflective coating in order to reflect enough light into
the position sensing photodetector.

a
Position sensing Probe laser
photodetector

‘ = )
Mechanical
Photodetector vibration

ﬂ i‘ [ vl Probe laser

Fig. 4.18 Schematic drawings of the (a) optical leverage detection and the (b) end-coupled optical
waveguide detection
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In-plane mechanical vibratio r‘ : Plasmonic dimer antenna

SiN nanobeams

Fig. 4.19 An example of a pair of silicon nitride (SiN) nanomechanical resonator with integrated
nanoplasmonic dimer antenna for plasmomechanical readout

4.6.3.2 End-Coupled Optical Waveguide

In this detection method, the nanomechanical resonator acts as a waveguide that
couples at its end to another waveguide (see Fig.4.18b). When the waveguide-
cantilever is vibrating, it changes the coupling efficiency (transmission) which
results in an optical amplitude modulation [78, 79]. This method enables the
multiplexing of an array of resonators with a single probing laser. In order to obtain
a maximal response, it is favorable if the coupled waveguides are a bit misaligned
to each other. This detection method does not require a coherent light source as
interferometric methods do. It is also not limited by the diffraction of light, which
is a problem of the optical leverage technique.

4.6.4 Plasmonic Detection

Plasmonic resonances correspond to the resonant oscillation of the polarized
electron cloud of metallic nanostructures. These resonance frequencies are typically
located at the frequency of light in the visible to near infrared regime. In between
two such plasmonic nanostructures that are in close proximity, a strong and
very localized electromagnetic field enhancement can be observed, which is often
referred to as a “hotspot.” These hotspots are famously used in surface enhanced
Raman spectroscopy (SERS) to “focus” the probing light below the diffraction
limit. It is possible to couple plasmonic resonances to the mechanical motion of
nanomechanical motion (Fig. 4.19). The plasmonic resonance can either be a surface
plasmon resonance, supported by the surface of a gold coated resonator [80, 81], or
a localized surface plasmon resonance, supported by metallic nanoparticles [82].
The plasmonic readout scheme is schematically explained in Fig. 4.20 for the case
of a plasmonic dimer antenna (two metallic nanoparticles). An increase of the
particle distance causes a blue shift of the plasmonic resonance peak. This shift
modulates a probing laser with a wavelength located at the slope of the plasmonic
resonance peak.
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Fig. 4.20 Schematic of the readout with a plasmonic dimer antenna. An increasing gap distance
causes a blue shift of the optic extinction peak, which can be detected with a probing laser
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Chapter 5
Measurement and Noise

Abstract Max Planck used to say that the only things that exist are those that can
be measured. In this chapter a general vision of the issues faced while performing
measurements of nanomechanical resonators is presented. Different noise sources
are analyzed: thermomechanical noise, electrical noise (Johnson, 1/f, shot noise),
and amplifier noise; to later define the Allan variance and how it relates to frequency
noise. This chapter will provide the reader with the necessary information and tools
to understand the basics of measurements and to maybe motivate further reading
beyond these pages.

The potential impact of nanomechanical resonators in the field of sensing has been
delineated in the previous chapter. However, the outstanding responsivity that is
associated with their small sizes is not enough to make a good sensor. Indeed, it
is typically the sensitivity that contains information about the sensor performance,
as it determines the minimum detectable amount of the target magnitude. As a
consequence, it is of the utmost importance to analyze the different noise sources
that enter these systems so that a full picture can be formed upon their usability in
actual applications. In this chapter, different noise sources are analyzed, starting by
a study of noise affecting the motion of the device (thermomechanical noise) or the
conversion of this motion into an electrically readable signal (transduction related
noise). Following the transduction chain, amplifier noise is then studied. This is
shown schematically in Fig. 5.1. Finally, the implications of these noise sources into
the determination of the device’s frequency are taken into consideration, as well as
other noise sources directly affecting the frequency.

5.1 Amplitude Noise

This section describes the different noise sources that affect the determination of
the amplitude of motion, both in magnitude and phase. It can also be referred to as
“open loop” as a contrast to the next section where the effect of the different noise
sources in the determination of frequency is going to be described.
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Fig. 5.1 Schematic showing the different noise sources along the different transduction stages.
Within the resonator itself, still in the mechanical domain thermomechanical noise enters the
system. Within the transduction to electrical signal, different noises may enter the system, e.g.
Johnson-Nyquist, Hooge, and Shot noise. Finally the amplifying stage of the system will insert the
input noise of the amplifier(s), dominated by current and voltage noise of the first amplifier

5.1.1 Fundamentals

Before starting the description of the different types of noise that can enter into
NEMS resonators, it is interesting to first take a look into two basic and fundamental
concepts: Transduction chain noise transfer and noise referred to input (RTT).

5.1.1.1 Transduction Chain Noise Transfer

It can be deduced from Fig. 5.1 that the final noise in the measurement (digital data)
will have contributions from the different noises in the transduction chain. But such
contributions have different influence on the final noise. Using the notation in the
figure, one can write that the total noise of the signal arriving at the digitizer is

SV,lotal = G\z/ (SV,A + SV,Trans + mi (Sx,ThMech)) 5 (51)

with the mode specific transducer responsivity 9R,, amplifier voltage gain Gy,
thermomechanical noise Sy Thmech, transduction noise Sy trans, and amplifier noise
Sy a. (5.1) can be generalized to any transduction chain. For example, if a second
amplifier was to be used, the final noise would be given by

Sv.oal = G5 (Svaz + G (Svar + Sv.Trans + M2 (SvThmech)) ) (5.2)

where it becomes clear that the noise in the first amplifier is the most important one
within the amplifying chain.

5.1.1.2 Noise Referred to Input (RTI)

A direct consequence from the equations in the previous paragraph is that the final
noise Sy a1 depends directly on the transduction chain. This is the reason why, in
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order to compare transduction chains from a noise perspective, the magnitude that
is taken to perform such comparison is the RTI. By comparing two different noise
RTTs one can see which transduction chain “adds” more noise to the signal.

The concept of noise RTI is easy to understand and calculate. It is first important
to substitute the transduction gain (with multiple stages) by a single stage with an
equivalent gain and an equivalent noise at the input of said single stage. Like that,
the system shown in Fig. 5.1 has an equivalent gain of: Gequiy = G12R, and a noise
RTI given by

SV,lotal SV,A + SV,Trans
Sgrr1 = @ - % + Sy ThMech- (5.3)

equiv
Or in the case that two amplifiers were to be used, the noise RTI becomes

SV total Svaz | Svar + Sv Trans
Sk = ' = ’ ' + S, . 4
RTI G% G%ﬁ%ﬁ G%ﬁ%ﬁ R .ThMech (5.4)
As it can be seen in both (5.3) and (5.4), the contribution of each stage in the
amplifying chain will be divided by the overall gain just until that stage, which
makes the stages closest to the sensor/device the most important ones in terms of
noise.

5.1.2 Thermomechanical Fluctuations

Any system that has a dissipation is subjected to damping, as is shown in Chap. 2.
In the particular case of mechanical resonators, this dissipation can be seen as the
coupling (interaction) between a cavity and a thermal reservoir full of randomly
distributed phonons. This coupling, due to the randomness of the phonons in the
reservoir, causes a noisy force that is applied to the mechanical resonator itself, as it
is explained by the fluctuation dissipation theorem (FDT) [1, 2]. This can be easily
written in equation form using the equation of motion that is analyzed in Chap. 1.
Here, (1.181) is simplified to not include axial tension, nonlinearity nor external
force

oA u(x, 1) N Cau(x, 1) N *u(x, 1)

EI = £(x.1). .
o or © gy @D (5-3)

If now a single mode motion is considered, it is possible to use the same approach
that is introduced in Chap. 1 in order to obtain a lump model of the noisy equation.
This implies multiplying by the mode shape and integrate along the length of the
mechanical structure
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L
meff,ni/in(t) + Feff,n’;ln(t) + keff,nun(t) = / g(X, t)¢n(t)dt = ég-n(t) (56)
0

It is important to remember that the magnitude denoting the amplitude of
vibration u,(¢) in this case is noise, meaning that the average over a long period
of time is going to be zero. Indeed this is a direct cause of the contact with the
thermal reservoir which causes the noisy force &(¢) to be white noise, i.e.

/ . 1 an / / /
(& (06, (") = lim / 006, (1)1 = 2rypaecnn(t — 1) (5.7)

where Itpmech., is the intensity of the noise for the nth mode and §(¢ — ') is the delta
function. The latter (5.7) can be written also in the frequency domain by taking the
Fourier transform and using (5.7) itself

(Eu(@) 5} () =/_ /_ (. (0, (1)) e did?

o0
- / 2 hMech @@~ dt (5.8)

—0o0

= 4JTIThMech,n5(w - Cl)/)

where &, (¢) is defined as

E,(w) = / ” E,(1)e™dr. (5.9)

If now (5.6) is transformed into the frequency domain, it can be obtained that

Ell (a))

Uy (0) = et (5.10)
((l)’% _ (1)2) +jreff.na)

Meff,n

and now taking the ensemble average of this magnitude

m 2 ) - Tt 2 ”n cTettn g
ff, - - -
eff,n (wn w* + Jmeffﬂa)) (wn 0] Tz @ )

| it 5.11)
TT {ThMech,n
= ,8(w — )

2
Mettn (w2 — w?)? + (Feff.n a))
n

Meff,n
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(5.11) can be used now to calculate the expected value of u,(f)

1 oo oo ) »
(u,(Hu, (1)) = A2 /_ /_ (un(a))u:(a)’))e’wte—jw 'dodw’

o0
1 1 IThMech.n do
I —o0 mgffn (wz —0)2)2 + Feff.nw 2
n Meft,n
(5.12)

I *© 1
-~ ThMech,n dow
- Zﬂmgffnwg —0o0 (a) —a))2 + Tefen 2

n 2meff n
IThMech,n
meff,n[‘eff,nw,%

Equation (5.12) is fundamental in the study of noisy systems as it provides an
expression that can be used within the equipartition of energy

Kettn (U2 (D)) = Metrn@?(u2(1)) = kgT — Itivtechn = kT Tetins (5.13)

which can be used to calculate the magnitude of the noise that is being inserted into
the system, i.e.

(6 (0&:(1)) = 2kpT Tesrn8(1 — 7). (5.14)

Equations (5.13) and (5.14) show how the noise intensity directly depends on
the temperature and the damping rate or, in other words, it depends on the phonon
population within the thermal reservoir and the level of interaction that is allowed
between the bath and the resonator.

When performing noise measurements, the magnitude that is typically measured
is the power spectral density (PSD). In order to obtain an expression for this
magnitude, it is possible to make use of the definition of the PSD given by

(ui(1) = /_ Sw(f)df, (5.15)

o0

which combined with (5.12) provides a formula for the PSD for systems with low
dissipation

kgT It 1
Sxx(f) - m2 2 Lt 2"
eff n““n (wn _ an)Z + ( eff.n )

2meffn

(5.16)
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This equation manifests that even though the input noise in force is white (5.7), the
resulting noise in motion is colored as it has a Lorentzian shape. From (5.15) it is
also possible to extract the noise magnitude at the peak of the Lorentzian

ksT ksTQ,

Su(fn) = = . .
(f ) 27r21“eff,nfnz 47T3meff’ylf;? (5 17)

It is worth noting that, even though the maximum value of S,.(f) is linearly
proportional to the quality factor of the resonator Q,, the overall noise (x?(f)) is
inversely proportional to Q,. In other words, for a given resonator, high O, means
less noise overall but a higher (and narrower) noise peak.

5.1.2.1 Amplitude Calibration

Before continuing to the next section, it is also interesting to mention the utility of
thermomechanical noise to calibrate the responsivity of the transduction mechanism
selected to detect the motion of the resonator. No matter the transduction mecha-
nism, the magnitude that is actually measured in the lab is electrical power coming
into the analyzer (e.g., spectrum, network, or lock-in amplifier). Thus, displacement
(in meters) is transduced into an electrical signal (volts) and it is necessary to find
an experimental way to estimate this transduction coefficient, which can be called
responsivity and in general is different for each resonator mode

R, = BV”. (5.18)
du,,

One of the typical ways of estimating R, is to use thermomechanical noise,
and the fact that the frequency dependence (5.16) and the overall integral along
the frequency spectrum (5.15) of such noise are both known. The procedure starts
by measuring the noise of the system under study around the resonance frequency
with a spectrum analyzer. The result should always be in units of noise (e.g.,
;’é) so that the size of the resolution bandwidth does not modify the final result.
Once this measurement has been performed, it is necessary to fit the data to a
Lorentzian function (5.16) with a background that accounts for other noise sources
that are analyzed later in this chapter. This background can typically be considered
as white noise (flat in the frequency domain), assuming that the measurement is
narrow-range around the resonant frequency of the device. The results for the fitting
parameters can be equated to the expected value(s) from (5.16), and like that one
can obtain the value for the transduction responsivity, R, (Fig.5.2).
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Fig. 5.2 Example of a thermomechanical noise measurement (scattered data). The fitting to a
Lorentzian function (purple line) with background (red line) provides us information about the
different noise sources in the measurement: system noise (including transduction and amplifier
noise) for the flat background and thermomechanical noise for the peak. Even though the
measurement is performed in volts (left axis), using the procedure described above it is possible to
calibrate the transduction back into meters (right axis)

5.1.3 Transduction Related Noise

As it is shown in Chap. 4, there are many different ways to detect the motion of a
mechanical device and transduce it into electrical energy. This of course affects the
value of the first responsivity R, that is shown in Fig. 5.1, but it also determines the
transduction noise, Sy Trans O S7 Trans» Which is the noise in the electrical domain that
is inserted in the system due to the transduction technique being used. This noise
Strans might have itself several possible origins. Johnson—Nyquist thermal noise,
Hooge 1/f noise, and Shot noise are generally the main contributions which will be
analyzed in the following paragraphs.

5.1.3.1 Johnson—-Nyquist Thermal Noise

Electrical thermal noise is caused by the random thermally excited vibration of the
charge carriers in a conductor. This is, in some way, similar to the Brownian motion
of particles or the previously described thermomechanical motion of the resonator.
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Thermal noise was first observed by J.B. Johnson and contemporaneously
explained by Nyquist [2]. It can be thus generalized via the FDT [1, 2], because
a conductor has a dissipative part, i.e. the real part of the impedance or Re(Z). The
noise is white up to a high frequency limit, where a roll-off occurs, allowing for
the overall noise level to remain finite. The noise magnitude, already estimated by
Johnson [3], in units of PSD is

V2
Sy, = 4ksTR [ }

Hz
4kgT [ A2
Sty = R Hy (5.19)

depending whether the noise is modelled as a current source in parallel to a noiseless
resistance or a voltage source in series with a noiseless resistance. In (5.19), kg
is the Boltzmann’s constant, T is the temperature of the resistor in Kelvin, and R
is the value of the resistance or, in the more general case, the value for the real
part of the impedance. In reality, as said above, the noise is not completely white
as (5.19) shows, but presents a cutoff frequency beyond which the noise relaxes
down, as shown in Fig. 5.3. This cutoff is fundamentally determined via the thermal
occupancy of states or by the fastest time scale on which electrons are typically
scattered. A more mundane reason for the roll-off is the parasitic capacitance that
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Fig. 5.3 Scaled thermal noise power spectral density versus scaled frequency. The noise is white,
i.e. constant, all the way until the cutoff frequency where it drops down to zero
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is always present in parallel to a resistor, thus limiting the amount of noise that is
transferred to other parts of the circuit.

As for any type of noise, in order to calculate the actual voltage or current noise
in the measurement one needs to integrate the PSD over the bandwidth, which
will be defined in particular for said experiment. The bandwidth of a measurement
establishes which part of the frequency spectrum is allowed to enter the detector.
A very large bandwidth will thus mean a larger noise but, at the same time, a shorter
integration time. On the other hand, having a small bandwidth will imply much
smaller noise but a larger integration time, which it can lead (but not necessarily) to
a slower response time.

The overall noise formula is given by

/i
Vi = \/ / 4kgTRdf = +/4ksTR BW
i

0

N Ak T Ak T
Iy = df = BW (5.20)
fo R R

where BW = fj — fj is the bandwidth of the measurement and it is assumed that the
cutoff frequency described in Fig. 5.3 is much larger than f;, which is typically the
case.

To finalize this section it is necessary to highlight that this analysis presented here
is strictly only valid when the resistor is not biased. In other words, it only works
when the electrons are, in average, not moving. In the biased case, there can be a
departure from the predicted values of (5.20), see [4] for more details. In addition,
as soon as the resistors are biased, two more noises enter to play: shot noise and
Hooge (1/f) noise.

5.1.3.2 Shot Noise

Current flowing is not smooth nor continuous. In the end, due to the fact that charge
is quantized, one can consider current as the succession of discontinuous pulses,
one for each arriving carrier. A useful analogy can be the raindrops of a heavy rain
falling on a tin roof.

Shot noise is the most fundamental model of discontinuous noise in physical
systems. It is not restricted to electrical systems but can be also found in any system
with quantized carriers like optical systems (photons), communication systems
(packets), acoustic systems (phonons), etc.

Shot noise was first described by Campbell [5, 6], followed by many studies
[7], out of which the experiments done by Schottky in 1918 represent an important
milestone [8]. It is associated with partitioned systems, like when current flows
across a potential barrier, e.g. in diodes, transistors, vacuum tubes, etc. The spectrum
is white and the intensity is given by
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AZ
St = 2el Ipias |:Hz:|

V2
SVshol = Zeglbiast [HZ} ’ (521)

where e is the unitary electron charge, Iy, is the current that passes through the
noisy part of resistance R, and ¢ is the Fano or correlation factor, which is a
proportionality factor that ranges from 0 when the material is a perfect conductor
to 1 for systems with full partition, e.g. for tunnel junctions, semiconductor fully
depleted regions, etc. For the rest of cases, 0 < ¢ < 1. In the particular case of
disordered conductors, it is possible to prove that { — ; [9].

From (5.21) it is possible to calculate the actual value of the noise by following
the same procedure shown in (5.20)

fi
Lshot = \// 2eé‘lbias df = \/2€§Ibias BW
Jo

f1
Vot = \/ / 2elInasR2 df = +/2elIiasR2 BW, (5.22)
fo

where once again BW is the bandwidth of the measurement. It is interesting to
note the dependence of the noise intensity with the square root of the current itself,
meaning that the larger the current the larger the noise (remember the analogy with
the heavy rain on the rooftop, where more rain would imply more noise).

5.1.3.3 Hooge (1/f)“Flicker” Noise

Up to now, the three noises that have been analyzed in this chapter have been white
(thermomechanical noise is white in force, Johnson and shot noise are white in
current). On the other hand, 1/f noise has a PSD that increases, in principle without
limit, as frequency decreases. The first observations of this noise were done on
vacuum tubes and they caused flickering in the plate current, hence the name
“flicker” noise.

This noise has several unique properties and it is quite ubiquitous, not only in
electronic systems (in particular in disordered conductors), but more generally in
most physical systems there is always an increase in the noise at low frequencies.
Even though it generally is called 1/f this is an abuse of language. As it has been
widely reported [10, 11], the reality is that the noise has a power dependence of
the type 1/f* where ¢ = 1 is the most common value. In electronic circuits, the
exponent is generally found within a range, typically 0.8 < o < 1.3. But there are
many other systems that show mechanisms with larger values of «, e.g. fluctuations
of the Earth’s rotation frequency have o« = 2, and galactic radiation noise has
a = 2.7. From now on, for simplicity, the most common value for the exponent
will be taken.
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The origin of this type of noise in electronic components seems to stem from
fluctuations of the conductance/resistance of the devices. Hooge [12] built a semi-
empirical law to model this noise, which is given by

S _ Vglas Vz
Yur = NC f |Hz
y V2 A?
Sy = szljaj [HZ : (5.23)

where y is a proportionality constant to be empirically estimated for a given device,
N, is the number of carriers in the device, and Vs is the bias voltage applied
to the noisy part of resistance R. Equation (5.23) hints the important temperature
dependence that this noise has, as the number of carriers (V.) depends strongly on
temperature, plus the proportionality constant has also been observed to depend on
temperature. This, in turn, makes this type of noise extremely dependent on the
device and operating conditions that are being used for an experiment.

To estimate the actual noise contribution of this type, it is necessary to integrate
the power spectrum density over the bandwidth

Y 1
1% Voias df =V, ln( )
1/f = \/ B A f f bias \/ N, A

f1 2 .
Y Vbiag Vbias Y 1
1 Ydf = 1 . 5.24
1/f = \/ f() Nc sz f R \/1\7C H( 0) ( )

A theoretical derivation for this noise can be found in the literature [13] and is
based on the superposition of multiple relaxation processes, each of them with a
Lorentzian-like power spectrum but different relaxation rates. After averaging, the
characteristic power law 1/f is recovered.

5.1.3.4 Noise Equivalent Circuit

Before moving on to the amplifier noise, it is interesting to show how the noise
sources that have just been analyzed look like when a circuit needs to be considered,
how to place them so that one can perform a proper noise analysis and translate such
noise to other places in the circuit. The two basic schematics that can be used are
either the Thevenin or the Norton equivalent circuit, as it is shown in Fig. 5.4.

5.1.4 Amplifier Noise

As illustrated in Fig.5.1, after the transduction of the motion into an electrical
signal, an amplifying stage is typically used to bring the signal to a level that can be
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Fig. 5.4 Noise equivalent circuits for a biased resistive element. Either option, Norton (a) or
Thevenin (b), can be used to calculate the overall noise and to estimate how much this noise
affects the next stage in the system

Fig. 5.5 Noise equivalent circuit to describe the ensemble of effects that are present internally in
any amplifier. V, and I, are, respectively, the voltage and current noise of the amplifier, G is its
gain and Z;, is its input impedance which in general can take complex values. The amplifier in the
model maintains the same gain as the original one, but in this case it is an ideal amplifier, which
means that is noiseless and with an infinite input resistance

detected or digitized by other equipments in the lab. Amplifiers are very complex
devices that contain many components, which makes it virtually impossible to
perform a thorough and detailed analysis of how each of these components affects
the overall noise within the amplifier. A noise model is helpful to simplify noise
analysis at the circuit/system level, i.e. how much the noise referred to input is. The
most extended noise model for amplifiers, which is also the simplest that allows
a full analysis, is the one that includes voltage and current noise in the input of a
noiseless amplifier (see Fig. 5.5 for a schematic of the equivalent circuit).

Once the schematic for the amplifier noise model is set, it is possible to calculate
the noise referred to input for this amplifier when other parts are connected to it.
As a simple example, let’s consider the circuit presented in Fig. 5.6, where an input
signal Vj, is sent to an amplifier through a resistive line of value R, which has an
associated noise Vn r- The actual gain of the whole (total) system, which can be
defined as G; = °“‘ , is different than the gain of the ideal amplifier present in the
schematic. It is rather straightforward to obtain that

Zin Zin

Vou = GR +Z Vin = G, = GR +Zin' (5.25)
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Fig. 5.6 Noise equivalent circuit for an amplifier connected to a source and a resistive element.
The amplifier model is the one present in Fig. 5.5

In order to estimate the noise referred to input it is necessary to consider
independently every noise source present in the schematic of Fig.5.6. To do this,
one needs to “null” (short-circuiting voltage sources and leaving current sources
open) all sources in the system except for one and calculate the noise contribution
and add these contributions squared. Following this approach it is easy to obtain the
noise in the output of the amplifier

2 2
Vo= ety ) e Fo (5.26)
n,out nR nA R+ Zin nA R+ Zin . :

Combining (5.26) and (5.25), one can obtain the noise referred to input of the
whole system

VRt = \/ (Vig +V2,) + 2 4R (5.27)

It needs to be pointed out here that all the previous equations are strictly valid
only if there is no correlation between voltage and current noise. In reality, it is
possible to find some correlation between the two of them, which complicates
the analysis requiring an extra term with the cross product of voltage and current
noise [14].

Following with the system schematized in Fig. 5.6, one can now post the question
about how does the signal to noise ratio (SNR) evolves from before and after
the amplifier. The SNR is a dimensionless figure of merit that allows to estimate
the quality (cleanliness) of your measurement technique, being better the larger the
SNR. The power SNR before and after the amplifier is, respectively, given by

S Vin \2
f— mn .2
(), = () 2
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and
N out [ n,out

2 2
Zin R Ziy
(Vie+ Vi) & (iZn,) +12.6* (&%)

Vi
Vig+ Vi, + 1R
V2
= " (5.29)
Vn,RTI

The ratio between these two SNR defines the noise factor, F of the amplifier, which
is given by

N

(Vi _ Vag ¥ Via TR _ | Via T IR
= ’ ’ ’ = + ’ ’

N 2 2

(N)()ut VV!,R Vn,R

F= (5.30)

where F > 1, and that it is equal to 1 when the amplifier does not add any noise to
the measurement, the ideal case. One could argue that this implies that the amplifier
only makes the measurement worse, as the SNR is smaller after the amplifier
than before. But when considering the final stage of the measurement chain, e.g.
a digitizer or an analog acquisition device, there are parts which will be noisier
than the noise coming from the transduction (in the example V, z) and also noisier
than the amplifier. Thus, the selection of a good amplifier for the first step in the
amplifying stage is critical.

5.1.4.1 Noise Figure and Noise Temperature
As it has been shown in previous paragraphs, the noise factor determines how good
or bad an amplifier is. There are two other parameters that are often used to describe
this point: noise figure (NF) and noise temperature (Tamp) Which are defined as
follows

NF = 10 log,,(F) (5.31)

and

Tamp =To (F—1), (5.32)
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where Ty is typically taken to be 290 K. The noise figure is a positive magnitude
that in the case of the ideal amplifier tends to zero, and is expressed in dB. Noise
temperature is a useful magnitude that uses the concept of noise being proportional
to temperature (in power), as it has been shown in the case of thermomechanical
and Johnson noise. It gives an idea of how much “hotter” the system is after the
amplifier.

An important point to address is that with neither of these parameters: noise
factor (F), noise figure (NF), or noise temperature (Tamp); it is not possible to have
a direct estimation of the amplifier noise, but only a ratio to V,, g. However, the latter
noise is typically considered to be Johnson noise of a 50 €2 resistor at 290 K (unless
specified otherwise), which is the most common impedance value for transmission
lines. Still, this does not allow to distinguish between current and voltage noise in
the amplifier, but only gives a concrete value for V, + I \R®. It should also be
noted that (5.30) and subsequent expressions are written as a function of noise, not
PSD. However, one can consider the noise contributions from the amplifier as white
within the measurement bandwidth. Thus, (5.30) becomes

Sv.a + SiaR?

F=1
+ Sk

(5.33)

5.2 Frequency Noise

In the previous section of the chapter, the noise in the determination of the amplitude
of motion has been analyzed. Recalling from Chap. 3, most of the applications that
use a NEMS as sensor involve the measurement of the resonant frequency rather
than the amplitude. Hence, it is very important to study how to determine the
noise in the frequency measurement. Let us make clear from the beginning that
the somewhat extended version of the frequency detection, which is illustrated in
Fig.5.7, and that involves the acquisition of successive amplitude vs. frequency
curves is not the typical (nor optimal) way of performing this detection. In this case,
the time between two consecutive experimental data points, i.e. two consecutive
determinations of a device’s natural frequency take very long, as many points need
to be acquired to be able to fit each curve and extract the frequency.

In practice, the usual way of proceeding is to generate a closed loop system that
allows for a direct estimation of the resonant frequency of the device. There are two
main ways of generating said closed loop, either by means of a phase-locked loop
(PLL) or via a self-sustained oscillator.

5.2.1 Phase-Locked Loop

A PLL, in its broadest definition, is a control system that balances its operating
point as a function of the difference between the phase of the output signal and its
comparison with a given set-point.
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Fig. 5.7 Two adjacent amplitude vs. frequency responses for an imaginary device: before and
after an event. The frequency shift can be related to the magnitude of said event. However, this
way of operation is not ideal nor recommended as it takes much longer than required to perform
the measurement, reducing the bandwidth of the measurement

PLLs are widely used, e.g., in telecommunications, radio, computers. They can
be used to recover a signal from a noisy communication channel, demodulate a
signal, synthesize harmonic signals at multiples of an input frequency, etc.

In particular for the case of resonant NEMS sensors, the typical configuration is
schematized in Fig. 5.8, and it has been used by many different groups in different
variations [15-18]. A given frequency generator outputs a signal that splits into two
branches: the reference arm and the measurement arm. While the measurement arm
passes through the device under study (DUT) and hence observing a phase shift,
the reference arm passes through a phase shifter that sets the phase to a given set
point. Later the phases in both signals are compared and the difference is used as an
input to the loop gain element, also called filter, which will calculate the shift in the
frequency output by the original generator. This gain function can be proportional to
the phase difference §¢ but it can also depend on the time derivative or the integral
of said phase difference (P-I-D control).

So in essence the PLL needs a very accurate determination of the phase,
otherwise the noise in the frequency will increase. If, for the sake of simplicity,
a proportional gain is considered in the PLL, it is rather straightforward that noise
in the phase determination will be proportional to noise in the frequency, and this
proportionality is given by the quality factor
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Fig. 5.8 Typical schematic of a PLL for NEMS. A signal source generates on the resonator a force
at a frequency w. At the output of the resonator its phase difference with respect to the reference
signal is calculated and input to the loop gain (or filter) that takes care of translating said phase
difference 8¢ into a jump in the frequency output from the signal generator, which in turn causes
the phase difference to reduce and eventually be cancelled. By monitoring the frequency output of
the source one can directly know the frequency of the device

Sw 2
o, = ﬂQSw. (5.34)

Figure 5.9a shows the phase response vs. frequency of a resonator with noise. An
accurate determination of said phase will directly impact the frequency stability of
the PLL. A visual interpretation of this noise in the phase determination can be seen
in Fig. 5.9b that shows a resonator in its rotatory (stroboscopic) frame of reference.
Due to the noise in the determination of the resonator state a cloud is generated
around the noiseless case. The angle sustained by such cloud represents the noise
in the determination of the phase. Needless to say that, provided the noise is white,
averaging for longer reduces the angle §v and thus the frequency noise Sw.

5.2.2 Self-Sustained Oscillator

In the previous section the concept of PLL is introduced and specifically how it can
be used to monitor the frequency. Using a PLL has certain limitations regarding
the speed of the measurement. Even though much faster than performing successive
frequency sweeps to determine the amplitude peaks, it still involves a feedback loop
that might be slow in some cases, e.g. if the processing box is inside a computer.

An alternative, in some sense one could consider this as a form of an analog
PLL, is to send back to the resonator the amplitude signal after amplification and
proper phase shift. This is typically called the oscillator or the positive feedback
technique. This has been tried by many different groups in different types of
implementations[19-30].



166 5 Measurement and Noise

a . . . —— b x
osol, . 1 I .
025} i 1 1
| &
= oca. \"'-
= | 1 %
025} 1
-0.50 R
1 1 1
-5 0 5
o (A.U.)

Fig. 5.9 (a) Phase vs. frequency response of a resonator, including the noise in the measurement.
The noise magnitude is scaled to make it visible. Said noise is shown larger close to the resonant
frequency because it is assumed that thermomechanical noise dominates over the other sources of
noise. (b) Schematic representation of the resonator state in the rotatory (stroboscopic) frame. The
cloud of points represent the different states after each cycle, taking into account the noise in the
system. The angle § can be considered as the magnitude of the noise in the determination of the
phase
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Fig. 5.10 (a) Schematic of a self-sustained oscillator system. The amplitude of motion of the
device is transduced to the electrical domain to be amplified and phase corrected to eventually
be sent as a feedback force to the device. The gain in the amplifier must be large enough
as to compensate the losses that are generated within the resonator and the electromechanical
transduction associated losses. To measure the frequency, the signal is taken out of the loop and
sent to a frequency counter. (b) Noisy harmonic signal to show the effect of such noise in the
determination of the frequency. Each time that the signal crosses through zero, there is noise caused
in the frequency determination. In addition to this direct or residual noise, the noisy signal is being
feedback to the device as a force

Figure 5.10a shows a schematic for this technique. The gain in the amplifier
(G) needs to be large enough as to compensate the losses within the resonator and
transduction efficiency whereas the phase shift (¢) needs to be adjusted so that the
feedback signal is in phase with the velocity (;r/2) out-of-phase with respect to the
amplitude.
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The equation governing the motion of a particular mode within a resonator is
given by (5.35), which is very similar to (5.6) but with a feedback term

meff,nﬁn(t) + Feff,n’;tn(t) + keff,nun(t) = Gm’;tn(t) + En(t)s (5.35)

where the transduction efficiency is hidden in the effective mechanical gain G,
which is the gain in the amplifier of Fig. 5.10a only with the transduction efficiency
(both actuation and detection) embedded within. (5.35) can be rewritten so that the
conditions mentioned above become clearer

meff,ni/in(t) + (Feff,n - Gm) ’;ln(t) + keff,nun(t) = Sn(t)7 (5.36)

where it is now evident that when the condition G,, > I, is held, the system
becomes unstable, a self-sustained oscillation starts and higher nonlinear terms need
to be considered to actually saturate the motion. These two conditions are typically
known as the Barkhausen criterium for oscillation, i.e. the gain in the feedback
compensates the losses in the resonator and the phase is matched to the velocity.

Once the system is operating, one needs to measure the frequency in this case a
frequency counter is typically used. This is a device that counts how many times a
signal passes through zero within a certain time and calculates the frequency using
that number and the measurement time. This now poses the question of what is the
type of noise that affects now this determination of the frequency. Within Fig. 5.10b
it is shown an example of a noisy harmonic signal. The inset shows the zone close
to one of the crossings around zero and that is the critical part where noise in
the amplitude directly affects the determination of the frequency. This is the direct
contribution, sometimes also called residual noise. There is another contribution to
the noise which happens within the feedback itself. In this case, the force driving
the resonator is not coming from an external device, i.e. being clean, but is defined
by the transduced amplitude of motion, which means that said driving force will be
noisy. This second contribution is in the loop, meaning that the noisy force causes a
noisier amplitude which in turn causes a noisier force and so on and so forth.

One can now analyze the differences between the PLL solution and the self-
sustained oscillator solution. The latter, as already advanced, is typically faster as
the feedback is purely analog, as opposed to the PLL solution where already the
lag caused by the external frequency source is larger. This difference is even more
pronounced when the PLL needs of a computer to perform the loop gain calculation,
in which case the delay might reach fractions of a second or even more. On the
other hand, in the case of a PLL the feedback force sent to the device will be cleaner
than in the case of the self-sustained oscillator. In the end, the most appropriate
method will be determined by every particular application, its requirements and
limitations.
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5.2.3 Allan Variance

To finalize this chapter it is important to talk about the magnitude that is typically
used as a metric for the frequency noise of the sensors. This is the so-called Allan
variance, named after its inventor Allan et al. [31, 32]. In principle this can be
applied to any magnitude as it is defined very generally

1 IR
o0 = A = 5y 4y L O =) (5.37)

where y; is the ith measurement of the magnitude y which is taken during an average
time 7, i.e.

1 it
Yie = / y()dr. (5.38)
T J(

i—1)t

The final result as a function of the integration time t provides a magnitude that,
in presence of white noise, reduces when t increases. Indeed this shows the major
advantage of this variance over the classical variance. The Allan variance converges
for most of the commonly encountered kinds of noise, whereas the classical variance
does not always converge to a finite value. As an example, 1/f noise has a classical
variance which does not converge, and it is commonly occurring in nature and, in
particular, clock-like systems (like oscillators or PLLs).

Equations (5.37) and (5.38) are very general as they can be applied to any
dimensionless variable y. In the particular case of resonance-based sensors y is
chosen to be

() = w(t)w_ “n (5.39)

n

which is the normalized instantaneous frequency difference to the natural frequency
of the resonator.

The Allan variance is the best known of the time-domain magnitudes to
characterize frequency inaccuracy. To know more about the other variances, the
reader is directed to follow the Appendixes in Ref. [33] and the references therein.
It is important to address the fact that in addition to these time-domain magnitudes
there exist their frequency-domain counterparts, which can be defined as

sin*(7f)
(f7)?
where f;, is the cutoff frequency associated with the measurement system.

Depending on the application domain, time-domain or frequency-domain magni-
tudes are preferred. In the sensors community, it is rather the Allan variance, in the

i
oy(r) =2 /0 S,(f) df, (5.40)
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Fig. 5.11 Typical Allan deviation plot as a function of the integration time t. The black line shows
the overall Allan deviation which is composed by three different contributions (in this particular
example): the white noise and thermomechanical noise, which are inversely proportional to /7
and follow the orange line; the 1/f noise that gives a flat contribution across the integration time
(grey line); and the drift or random walk that will increase proportional to 7 or %, as it is marked
by the pink line. The minimum noise can be found in this case for t ~ 2 s, but that does not
necessarily mean that this will be the most appropriate operation point. It might be that one needs
to compromise resolution in favor of speed in the measurement

time domain, what is used so that one can directly estimate the noise in the system
for a given integration time.

In previous sections the noise that needs to be accounted for in the PLL and
oscillator has been explained. The consequence of these types of noise in the Allan
variance (or rather Allan deviation) can be seen graphically in Fig. 5.11. White noise
in the amplitude determination and thermomechanical noise are translated into a o,
that decreases proportionally to the square root of the integration time. 1/f noise
shows as a flat region, i.e. with such noise source it is not possible to improve your
measurement by averaging longer. Finally, when drift exists in the system o, will
increase proportional to 7% or t. Theoretically it is typically easy to access the
measurement of the white noise, so that part of the graph can be estimated. This can
be done following the Robbin’s formula

o2 (Su)? V21 V2s”
ol (1) = oy (un ) — 0,(1) = xOSNR = 20 (0 VBW,  (541)

which indeed shows the time dependence that can be seen in Fig.5.11.

However, the actual limitation for the detection cannot be estimated that easily
as it normally comes from either of the other contributions. Therefore, in order
to actually determine a system’s limits, the Allan deviation must be measured
experimentally. Once that is done, one can easily locate which is the most effective
point for operation. This might coincide with the minimum, but it can also happen
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Fig. 5.12 The frequency stability of micro- and nanomechanical resonators at room temperature
as a function of their mass, extracted from literature. The data is taken from [34]

that the application requires faster response time (smaller integration time t) and
thus resolution is compromised in favor of a faster measurement.

It has been shown recently that the theoretical calculation of the frequency
noise is resulting in o values that are roughly two order of magnitude lower than
experimentally observed values [34]. However, the Allan deviation was found to
correlate with the resonator’s mass (see Fig. 5.12). Hence, the fit to the experimental
data can be used as a heuristic predictor for the achievable frequency noise of a
nanomechanical system of a given total mass m and is given by

1
~ 107122 . 5.42
o J ( )
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Electrical charge damping, 58
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Rectangular membrane, 25

Rectangular membranes, 25

Rectangular Plates, 21

Relative responsivity, 92

Relaxed Young’s modulus, 74
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Reynold’s number, 60

Ring down method, 37

Ritz method, 5

Robbin’s formula, 169
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Roots of frequency equation of cantilever, 10
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Shot noise, 157

Squeeze-film damping, 62

Standard linear sold, 70

Storage modulus, 71

Storage Young’s modulus, 71

Strain coefficient of resistivity, 133
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String responsivity to ambient temperature,
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Strong coupling, 45

Surface friction, 77

Surface plasmon resonance, 142
Suspended microchannel resonators, 60

T

Temperatur responsivity of stress released
resonators, 106

Temperature response of string to local heating,
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Thermoelastic actuation, 131

Thermoelastic damping, 78

Thermomechanical noise, 151

Time temperature equivalence, 75

Torsional paddle resonator, 40

Torsional vibration of thin beams, 27

Transduction chain noise transfer, 150

Transimpedance amplifier, 129

Tunneling transduction, 115

Two level system, 75

U
U-tube resonators, 60
Unrelaxed Young’s modulus, 74

\"
Viscoelasticity, 70

W

Wave velocity inside a material, 18

Wave velocity inside a string or membrane, 15
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‘White noise, 152
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Zener model, 70
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